CNN卷积神经网络实战案例
大概想法是把几个不同的案例取长补短,把图像分类的功能学会
有的时候需要提前观察一下数据,这样才好感同身受
基于cnn实现垃圾分类
https://www.heywhale.com/mw/project/5d26a62b688d36002c58a627/dataset
Q1:这个应该是读取图片的日常功能?
Q2:这个随机展示6张图片是怎么个操作?
Q3:这tm是什么数据分组的方式
决策树疑问处理+
Q2:分叉树的形象到底如何理解,Q3:还有最大深度的确定
Q1:决策树到底是回归还是什么?
形象化难以接受和理解
分类还比较好理解,但是回归是什么鬼?——剪枝又是什么意思
这幅图一画,我大概有点明白了
Q4:bagging,boosting是什么?
Q5:设置约束
Q6:设置超参数
代码实现,日后如何找寻以及确认,其他的模型能否按照相同的逻辑套用
知道超参数的含义后,以及其内部的调整和变动,会带来什么样的影响?
Q7:HMM是什么?-隐马尔科夫,的进化以及迭代
Q8:ASR system
为什么决策树对于缺失值具有一定的忍耐性
用剪枝来解决过拟合的问题!
Q9:这段的目的是什么?能不能直接调用,后续可能需要修改什么内容
这个好像是需要下载
https://www.jb51.net/article/195212.htm
python语音识别指南终极版
Q2:两个差不多的图像数据集,为何在测试集和训练集的划分手段上差异这么大呢?
Q3:为啥别人加载前面几张图片就不用reshape这么麻烦的操作
Q1:这是干啥的?加载个数据集,什么时候加batch,什么时候不用batch?
epoch类似于高,一共整体再循环多少次
batch_size是每一批次的数目
iterations是一个批次内部需要拆分的数目
Q1.1:因为这道题本身的数据集差异,所以对应解锁的方式不同?
Q4:X_train是什么?这么麻烦?
虽然说她麻烦,但他确实没有用mageDataGeneraterI
Q6:把这几篇使用的cnn模型汇总一下,然后跟现有的最先进的模型汇合一下
Q5:前面不是有个reshape吗?
这个维度和维数的坑,跟那边一块解决掉
Q5.1:有哪几个指标或者维数需要解决的
batch,channels,height,width ?没有length
Q5.2:最大池化层的作用是什么?
model.add(MaxPooling2D(pool_size=(2,2))
过滤器多少的选择32或者64,卷积核大小会不会有差异?
input_shape图像输入维度
Q5.3model.add(Flatten())添加展平层+Dropout内部参数如何敲定?
Q1:PIL包引出Image别的库怎么没有这个操作?
从导入的库是不是嫩看出血差异
Q3:这波转化又是什么意思?
直接用最全能的,然后进行其他的替换和格式的统一,便是成功!