概率统计 第一章 随机事件的概率 2021.9.13

今天讲完概率统计的第一章了。概率统计从中学就开始学,暑假又听了一套网课,但是掌握情况还是达不到最理想。可能就是因为心里缺少一个完整而又清晰的体系架构。所以做一个知识梳理,希望能达到提纲挈领的效果吧。

1.1 随机事件与样本空间

1.随机试验与随机事件
2.样本空间
3.随机事件的关系和运算
关系:

不相容/互斥

互逆/对立

运算:
  1. 交换律
  2. 结合律
  3. 分配律
  4. 德摩根公式

1.2 古典概率 几何概率 统计概率

1.古典概型与概率的古典定义

定义1(古典型随机事件)

有限个基本事件

每个基本事件发生等可能

定义2(古典概率)

P ( A ) = k n = 事 件 A 所 包 含 基 本 事 件 的 个 数 基 本 事 件 总 数 P(A)=\frac{k}{n}=\frac{事件A所包含基本事件的个数}{基本事件总数} P(A)=nk=A

古典概率的性质
  1. 非负性:对任意事件A, 0 ≤ P ( A ) ≤ 1 0\leq P(A) \leq 1 0P(A)1成立
  2. 规范性: P ( S ) = 1 P(S)=1 P(S)=1
  3. 有限可加性:若事件 A 1 , A 2 , . . . , A m A_1,A_2,...,A_m A1,A2,...,Am互不相容,则有

P ( ∑ i = 1 m A i ) = ∑ i = 1 m P ( A i ) P(\sum_{i=1}^{m}A_i)=\sum_{i=1}^{m}P(A_i) P(i=1mAi)=i=1mP(Ai)

  1. P ( A ‾ ) = 1 − P ( A ) , P ( A ) = 1 − P ( A ‾ ) P( \overline{A})= 1-P(A),P(A)=1-P(\overline{A}) P(A)=1P(A)P(A)=1P(A)
几个记号规定
  1. 排列数 A n k A_{n}^{k} Ank
  2. 全排列数 P n P_n Pn
  3. 组合数 C n k C_{n}^{k} Cnk

2. 几何概型与概率的几何定义

定义3(几何概率)

P ( A ) = L ( A ) L ( C ) P(A)=\frac{L(A)}{L(C)} P(A)=L(C)L(A)

L(A):事件A的度量

几何概率的性质
  1. 非负性:对任意事件A, 0 ≤ P ( A ) ≤ 1 0\leq P(A) \leq 1 0P(A)1成立
  2. 规范性: P ( S ) = 1 P(S)=1 P(S)=1
  3. 有限可加性:若事件 A 1 , A 2 , . . . , A m A_1,A_2,...,A_m A1,A2,...,Am互不相容,则有

P ( ∑ i = 1 m A i ) = ∑ i = 1 m P ( A i ) P(\sum_{i=1}^{m}A_i)=\sum_{i=1}^{m}P(A_i) P(i=1mAi)=i=1mP(Ai)

  1. 可列可加性(完全可加性):若事件 A 1 , A 2 , . . . , A n , . . . A_1,A_2,...,A_n,... A1,A2,...,An,...互不相容,则有

P ( ∑ n = 1 + ∞ A n ) = ∑ n = 1 + ∞ P ( A n ) P(\sum_{n=1}^{+\infty}A_n)=\sum_{n=1}^{+\infty}P(A_n) P(n=1+An)=n=1+P(An)

3.概率的统计定义

引进:事件不是等可能的情形

定义4(频率)

f n ( A ) = n A n f_n(A)=\frac{n_A}{n} fn(A)=nnA

n:发生的次数

频率的性质
  1. 非负性:对任意事件A, 0 ≤ f n ( A ) ≤ 1 0\leq f_n(A) \leq 1 0fn(A)1成立
  2. 规范性: f n ( S ) = 1 f_n(S)=1 fn(S)=1
  3. 有限可加性:若事件 A 1 , A 2 , . . . , A m A_1,A_2,...,A_m A1,A2,...,Am互不相容,则有

P ( ∑ i = 1 m A i ) = ∑ i = 1 m P ( A i ) P(\sum_{i=1}^{m}A_i)=\sum_{i=1}^{m}P(A_i) P(i=1mAi)=i=1mP(Ai)

频率稳定性的观察发现与首创验证
定义5(统计概率/经验概率)

P ( A ) = p P(A)=p P(A)=p

概率近似求法

P ( A ) 约 等 于 f n ( A ) = n A n ( 或 写 成 lim ⁡ n → ∞ f n ( A ) = P ( A ) ) P(A)约等于f_n(A)=\frac{n_A}{n} \\(或写成\lim_{n \rightarrow \infty}f_{n}(A)=P(A)) P(A)fn(A)=nnA(nlimfn(A)=P(A))

1.3 概率的公理化定义

事件域F
定义(概率测度函数)

1.4 条件概率与乘法公式

1.条件概率的概念

定义(条件概率)

在 事 件 B 发 生 的 条 件 下 事 件 A 发 生 的 概 率 : P ( A ∣ B ) = P ( A B ) P ( B ) 其 中 P ( B ) > 0 在事件B发生的条件下事件A发生的概率: \\P(A|B)=\frac{P(AB)}{P(B)} \\其中P(B)>0 BAP(AB)=P(B)P(AB)P(B)>0

条件概率的性质:
  1. 非负性
  2. 规范性
  3. 可列可加性(此时B不变,A从A_1取到A_n)
  4. 对任意事件A,有 P ( A ‾ ∣ B ) = 1 − P ( A ∣ B ) P(\overline{A}|B)=1-P(A|B) P(AB)=1P(AB)

2.乘法公式

P ( A B ) = P ( B ) P ( A ∣ B ) , ( P ( B ) > 0 ) ; P ( A B ) = P ( A ) P ( B ∣ A ) , ( P ( A ) > 0 ) . P(AB)=P(B)P(A|B),(P(B)>0); \\P(AB)=P(A)P(B|A),(P(A)>0). P(AB)=P(B)P(AB),(P(B)>0);P(AB)=P(A)P(BA),(P(A)>0).

乘法公式的推广:
P ( A 1 A 2 ⋅ ⋅ ⋅ A n ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) ⋅ ⋅ ⋅ P ( A n ∣ A 1 A 2 ⋅ ⋅ ⋅ A n − 1 ) P ( A 1 A 2 A 3 ) = P ( A 1 ) P ( A 2 ∣ A 1 ) P ( A 3 ∣ A 1 A 2 ) P ( A 1 A 2 ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) P ( A 1 A 2 A 3 ∣ B ) = P ( A 1 ∣ B ) P ( A 2 ∣ A 1 B ) P ( A 3 ∣ A 1 A 2 B ) P(A_1A_2···A_n)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2)···P(A_n|A_1A_2···A_{n-1}) \\ \\P(A_1A_2A_3)=P(A_1)P(A_2|A_1)P(A_3|A_1A_2) \\P(A_1A_2|B)=P(A_1|B)P(A_2|A_1B) \\P(A_1A_2A_3|B)=P(A_1|B)P(A_2|A_1B)P(A_3|A_1A_2B) P(A1A2An)=P(A1)P(A2A1)P(A3A1A2)P(AnA1A2An1)P(A1A2A3)=P(A1)P(A2A1)P(A3A1A2)P(A1A2B)=P(A1B)P(A2A1B)P(A1A2A3B)=P(A1B)P(A2A1B)P(A3A1A2B)

1.5 全概率公式与贝叶斯公式

  • 这一节重要的思想基础:导致事件 A A A发生的全部“原因”: B 1 , B 2 . . . , B n B_1,B_2...,B_n B1,B2...,Bn

1. 全概率公式

定理1(全概率公式)

对于任意事件A:
P ( A ) = ∑ i = 1 n P ( B i ) P ( A ∣ B i ) P(A)=\sum_{i=1}^{n}P(B_i)P(A|B_i) P(A)=i=1nP(Bi)P(ABi)
其中,

  1. ∑ i = 1 n B i = S \sum_{i=1}^{n}B_i=S i=1nBi=S
  2. B 1 , B 2 , . . . , B i B_1,B_2,...,B_i B1,B2,...,Bi互不相容
  3. P ( B i ) > 0 , i = 1 , 2 , . . . , n P(B_i)>0,i=1,2,...,n P(Bi)>0,i=1,2,...,n
注意:
  1. 定理1中条件1可以减弱为 ∑ i = 1 n B i ⊃ A \sum_{i=1}^{n}B_i⊃A i=1nBiA

  2. 事件组可以是可列无穷多个事件 B 1 , B 2 , . . . , B n B_1,B_2,...,B_n B1,B2,...,Bn

定义1’(推广到无限可列个的全概率公式)

2.贝叶斯公式

定理2(贝叶斯公式)

对于任意事件A:
P ( B i ∣ A ) = P ( A B i ) P ( A ) = P ( B i ) P ( A ∣ B i ) ∑ j = 1 n P ( B j ) P ( A ∣ B j ) ) P(B_i|A)=\frac{P(AB_i)}{P(A)}=\frac{P(B_i)P(A|B_i)}{\sum_{j=1}^{n}P(B_j)P(A|B_j)}) P(BiA)=P(A)P(ABi)=j=1nP(Bj)P(ABj)P(Bi)P(ABi))
其中,

  1. ∑ i = 1 n B i = S \sum_{i=1}^{n}B_i=S i=1nBi=S
  2. B 1 , B 2 , . . . , B i B_1,B_2,...,B_i B1,B2,...,Bi互不相容
  3. P ( B i ) > 0 , i = 1 , 2 , . . . , n P(B_i)>0,i=1,2,...,n P(Bi)>0,i=1,2,...,n

1.6 事件的独立性

定义1(独立)

P ( A B ) = P ( A ) P ( B ) P(AB)=P(A)P(B) P(AB)=P(A)P(B)

概率为0或1的事件与任意事件相互独立。特别地,S和Φ与任意事件独立

1. 事件相互独立判别法
定理1

若 P ( B ) > 0 , A 与 B 独 立 ⇿ P ( A ∣ B ) = P ( A ) 若P(B)>0,A与B独立⇿P(A|B)=P(A) P(B)>0,ABP(AB)=P(A)

定理2

若 P ( B ) > 0 , P ( B ‾ > 0 ) , 则 A 与 B 独 立 ⇿ P ( A ∣ B ) = P ( A ∣ B ‾ ) 若P(B)>0,P(\overline{B}>0),则A与B独立⇿P(A|B)=P(A|\overline{B}) P(B)>0,P(B>0),ABP(AB)=P(AB)

2. 独立事件的性质

A 与 B , A ‾ 与 B , A 与 B ‾ , A ‾ 与 B ‾ A与B,\\\overline{A}与B,\\A与\overline{B},\\\overline{A}与\overline{B} AB,AB,AB,AB 的独立可以互推

3. 有限多个事件的独立性和无穷多个事件的独立性
定义2
  1. 若事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An满足
    P ( A i A j ) = P ( A j ) P ( A j ) , 其 中 1 ≤ i < j ≤ n , P(A_iA_j)=P(A_j)P(A_j),其中1\leq i<j\leq n, P(AiAj)=P(Aj)P(Aj),1i<jn,

则称n个事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An是两两独立的。

  1. 若事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An,对任意整数 k , 2 ≤ k ≤ n k,2\leq k\leq n k,2kn 1 ≤ i 1 < i 2 < . . . < i n ≤ n 1\leq i_1<i_2<...<i_n\leq n 1i1<i2<...<inn,恒有

P ( A i 1 A i 2 . . . A i j ) = P ( A i 1 ) P ( A i 2 ) . . . P ( A i j ) , 其 中 1 ≤ i < j ≤ n , P(A{i_1}A_{i_2}...A_{i_j})=P(A_{i_1})P(A_{i_2})...P(A_{i_j}),其中1\leq i<j\leq n, P(Ai1Ai2...Aij)=P(Ai1)P(Ai2)...P(Aij),1i<jn,

则称n个事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An相互独立。

  1. 对于可列无穷多个事件 A 1 , A 2 . . . , A n , . . . A_1,A_2...,A_n,... A1,A2...,An,...,若其中任意有限多个事件都相互独立

,则称可列无穷多个事件 A 1 , A 2 . . . , A n , . . . A_1,A_2...,A_n,... A1,A2...,An,...相互独立。

若事件事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An,是两两独立的,则事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An未必相互独立!!!

定理4

若事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An相互独立,则事件 B 1 , B 2 . . . , B n B_1,B_2...,B_n B1,B2...,Bn也相互独立,其中 B i B_i Bi A i A_i Ai A i ‾ \overline{A_i} Ai i = 1 , 2 , . . . , n i=1,2,...,n i=1,2,...,n

4.独立条件下一些概率的计算公式

设事件 A 1 , A 2 . . . , A n A_1,A_2...,A_n A1,A2...,An相互独立,则有
1 ) P ( A 1 A 2 . . . A n ) = P ( A 1 ) P ( A 2 ) . . . P ( A n ) 2 ) P ( A 1 + A 2 + . . . + A n ) = 1 − P ( A 1 ‾ ) P ( A 2 ‾ ) . . . P ( A n ‾ ) 2 ) P ( A 1 ‾ + A 2 ‾ + . . . + A n ‾ ) = 1 − P ( A 1 ) P ( A 2 ) . . . P ( A n ) 1)P(A_1A_2...A_n)=P(A_1)P(A_2)...P(A_n) \\2)P(A_1+A_2+...+A_n)=1-P(\overline{A_1})P(\overline{A_2})...P(\overline{A_n}) \\2)P(\overline{A_1}+\overline{A_2}+...+\overline{A_n})=1-P(A_1)P(A_2)...P(A_n) 1)P(A1A2...An)=P(A1)P(A2)...P(An)2)P(A1+A2+...+An)=1P(A1)P(A2)...P(An)2)P(A1+A2+...+An)=1P(A1)P(A2)...P(An)
2)和3)的证明用到了德摩根公式

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值