信息安全数学基础-等价关系 欧拉函数计算 2021-09-22

5. 等价关系 欧拉函数计算

问题的提出

  • 围绕同余关系,对整数集合做划分
  • 将同余关系推广到更一般
  • 回顾:对正整数m和整数a, a − 1   m o d   m a^{-1}\ mod\ m a1 mod m存在的充分必要条件为 ( a , m ) = 1 (a,m)=1 (a,m)=1,若 a − 1   m o d   m a^{-1}\ mod\ m a1 mod m存在则称a为一个单位(unit)
  • a 1 a_1 a1 a 2 a_2 a2是单位,则 a 1 a 2 a_1a_2 a1a2也是单位
  • φ ( m ) \varphi(m) φ(m)

1. 等价关系和剩余类

同余关系的性质

  1. 自反性: a ≡ a ( m o d   m ) a≡a(mod\ m) aa(mod m)
  2. 对称性: 如 果 a ≡ b , 则 b ≡ a ( m o d   n ) 如果a≡b,则b≡a(mod\ n) abba(mod n)
  3. 传递性: 如 果 a ≡ b ( m o d   n ) , b ≡ c ( m o d   n ) , 则 a ≡ c ( m o d   n ) 如果a≡b(mod\ n),b≡c(mod\ n),则a≡c(mod\ n) ab(mod n),bc(mod n)ac(mod n)

等价关系的定义

关系的定义

几何D={对,错},集合A上定义的一个关系为一个A×A到D的映射R:

R(a , b) = 对,即a和b符合关系R,记成 a R b aRb aRb

R(a , b) = 错,即a和b不符合关系R

等价关系的定义

集合A的元间的一个关系~叫一个等价关系,假如~满足以下规律:

  • 自反律
  • 对称律
  • 传递律

若a~b,则称a与b等价

(关于等价关系:相等是,整除不是,大于不是,同余是)

同余是一个等价关系
定义(剩余类)

记 [ i ] = { j ∣ j ≡ i ( m o d   m ) } , 有 [ i ] = [ i + m ] = [ i − m ] = [ i + k m ] i 称 为 模 m 的 一 个 剩 余 类 。 模 m 的 剩 余 类 恰 好 有 m 个 : [ 0 ] , [ 1 ] , [ m − 1 ] 而 且 Z = [ 0 ] ∪ [ 1 ] ∪ . . . ∪ [ m − 1 ] 记[i]=\{j|j≡i(mod\ m)\},有 \\ [i]=[i+m]=[i-m]=[i+km] \\i称为模m的一个剩余类。模m的剩余类恰好有m个: \\ [0],[1],[m-1] \\而且Z=[0]∪[1]∪...∪[m-1] [i]={jji(mod m)},[i]=[i+m]=[im]=[i+km]immm[0],[1],[m1]Z=[0][1]...[m1]

2. 完全剩余系

定义(代表元和完全剩余系)
完全剩余系的判定定理

设m是正整数,S是一个整数集,则S是模m的一个完全剩余系的充分必要条件是:

  • S包含m个元素

  • S中任意两个元素模m不同余

  • 最小非负剩余系&最小正剩余系&绝对最小完全剩余系

完全剩余系的性质

定理

若 m 是 正 整 数 , b 是 任 意 整 数 , ( a , m ) = 1 , 若 x 遍 历 m 的 一 个 完 全 剩 余 系 , 则 a x + b 也 遍 历 模 m 的 一 个 完 全 剩 余 系 若m是正整数,b是任意整数,(a,m)=1,若x遍历m的一个完全剩余系, \\则ax+b也遍历模m的一个完全剩余系 mb(a,m)=1xmax+bm

证明

只 需 证 明 当 x 1 , x 2 , . . . , x m 是 模 m 的 一 个 完 全 剩 余 系 时 , m 个 整 数 a x 1 + b , . . . , a x m + b 模 m 两 两 不 同 余 用 反 证 法 : 假 设 存 在 x i 和 x j ( i ≠ j ) 使 得 a x i + b ≡ a x j + b ( m o d   m ) 则 m ∣ a ( x i − x j ) , 而 ( a , m ) = 1 , 得 m ∣ ( x i − x j ) 即 x i ≡ x j , 矛 盾 只需证明当x_1,x_2,...,x_m是模m的一个完全剩余系时,m个整数 \\ ax_1+b,...,ax_m+b模m两两不同余 \\用反证法:假设存在x_i和x_j(i≠j)使得a_xi+b≡ax_j+b(mod\ m) \\则m|a(x_i-x_j),而(a,m)=1,得m|(x_i-x_j) \\即x_i≡x_j,矛盾 x1,x2,...,xmmmax1+b,...,axm+bmxixji=j使axi+baxj+b(mod m)ma(xixj)(a,m)=1m(xixj)xixj

定理

若 m 1 和 m 2 是 两 个 互 素 的 正 整 数 , 若 x 遍 历 m 1 的 一 个 完 全 剩 余 系 , 若 y 遍 历 m 2 的 一 个 完 全 剩 余 系 , 则 m 1 y + m 2 x 也 遍 历 模 m 1 m 2 的 一 个 完 全 剩 余 系 若m_1和m_2是两个互素的正整数, \\若x遍历m_1的一个完全剩余系,若y遍历m_2的一个完全剩余系, \\则m_1y+m_2x也遍历模m_1m_2的一个完全剩余系 m1m2xm1ym2m1y+m2xm1m2

证明

只 需 要 证 明 m 2 x i + m 1 y j ( i = 0 , 1 , . . . , m 1 − 1 ; j = 0 , 1 , . . . , m 2 − 1 ) 这 m 1 m 2 个 数 模 m 1 m 2 两 两 不 同 余 用 反 证 法 : 假 设 存 在 有 序 对 ( x a , y c ) 和 ( x b , y d ) ( 0 ≤ a , b ≤ m 1 − 1 , 0 ≤ c , d ≤ m 2 − 1 ) 且 ( x a , y c ) ≠ ( x b , y d ) , 满 足 : m 2 x a + m 1 y c ≡ m 2 x b + m 1 y d ( m o d   m 1 m 2 ) 进 而 有 m 2 x a + m 1 y c ≡ m 2 x b + m 1 y d ( m o d   m 1 ) 从 而 有 m 2 x a ≡ m 2 x b ( m o d   m 1 ) ( 上 面 那 一 步 中 , m 1 y c 和 m 1 y d 都 是 m 1 的 倍 数 , 在 模 m 1 取 余 时 可 以 直 接 去 掉 ) 于 是 有 m 1 ∣ m 2 ( x a − x b ) , 又 ( m 1 , m 2 ) = 1 , 则 m 1 ∣ ( x a − x b ) 即 x a ≡ x b ( m o d   m 1 ) , 故 有 x a = x b , 同 理 可 证 y c = y d , 与 假 设 矛 盾 只需要证明m_2x_i+m_1y_j(i = 0,1,...,m_1-1;j=0,1,...,m_2-1) \\这m_1m_2个数模m_1m_2两两不同余 \\用反证法:假设存在有序对(x_a,y_c)和(x_b,y_d) \\(0\leq a,b\leq m_1-1,0\leq c,d\leq m_2-1) \\且(x_a,y_c)≠(x_b,y_d),满足: \\m_2x_a+m_1y_c≡m_2x_b+m_1y_d(mod\ m_1m_2) \\进而有 \\m_2x_a+m_1y_c≡m_2x_b+m_1y_d(mod\ m_1) \\从而有 \\m_2x_a≡m_2x_b(mod\ m_1) \\(上面那一步中,m_1y_c和m_1y_d都是m_1的倍数,在模m_1取余时可以直接去掉) \\于是有m_1|m_2(x_a-x_b),又(m_1,m_2)=1,则m_1|(x_a-x_b) \\即x_a≡x_b(mod\ m_1),故有x_a=x_b,同理可证y_c=y_d,与假设矛盾 m2xi+m1yj(i=0,1,...,m11;j=0,1,...,m21)m1m2m1m2(xa,yc)(xb,yd)(0a,bm11,0c,dm21)(xa,yc)=(xb,yd),m2xa+m1ycm2xb+m1yd(mod m1m2)m2xa+m1ycm2xb+m1yd(mod m1)m2xam2xb(mod m1)(m1ycm1ydm1m1)m1m2(xaxb),(m1,m2)=1,m1(xaxb)xaxb(mod m1),xa=xbyc=yd

3. 欧拉函数的计算

欧拉函数的定义

Euler函数

φ ( m ) 是 0 , 1 , 2 , . . . , m − 1 中 与 m 互 素 的 数 的 个 数 \varphi(m)是0,1,2,...,m-1中与m互素的数的个数 φ(m)0,1,2,...,m1m

欧拉函数的简单计算

事实:

当 p 为 素 数 时 , φ ( p n ) = p n − p n − 1 当p为素数时,\varphi(p^n)=p^n-p^{n-1} pφ(pn)=pnpn1

  • p n p^n pn互素的一定不含有因子p
  • [ 0 , p n − 1 ] [0,p^n-1] [0,pn1]中p的倍数有 p n − 1 个 p^{n-1}个 pn1

既约剩余系

事实:

在模m的一个剩余类中,如果有一个数与m互素,则该剩余类中每个数都与m互素

定义
  • 若m的剩余类中有一个数与m互素,称此剩余系与m互素
  • 与m互素的剩余类个数记为 φ ( m ) \varphi(m) φ(m) φ ( m ) \varphi(m) φ(m)称为Euler函数
  • 在模m的一个完全剩余系中,有 φ ( m ) \varphi(m) φ(m)个数是与m互素的,称这 φ ( m ) \varphi(m) φ(m)个数构成模m的一个既约剩余系

既约剩余系

既约剩余系判定定理

设m是正整数,S是一个整数集,则S是模m的一个既约剩余系的充分必要条件是:

  • S中包含 φ ( m ) \varphi(m) φ(m)个元素
  • S中任意两个元素模m不同余
  • S中的每个元素都与m互素
既约剩余系的性质
定理

若 m 是 正 整 数 , b 是 任 意 整 数 , ( a , m ) = 1 , 若 x 遍 历 m 的 一 个 既 约 剩 余 系 , 则 a x 也 遍 历 模 m 的 一 个 既 约 剩 余 系 若m是正整数,b是任意整数,(a,m)=1,若x遍历m的一个既约剩余系, \\则ax也遍历模m的一个既约剩余系 mb(a,m)=1xmaxm

证明

设 S = { x 1 , 1 , x 2 , . . . x φ ( m ) } 为 一 个 既 约 剩 余 系 , 构 造 S ′ = { a x 1 , a x 2 , . . . a φ ( m ) } 由 于 ( x i , m ) = 1 , ( a , m ) = 1 , 得 ( a x i , m ) = 1 若 存 在 x k 和 x l ( 1 ≤ k ≠ l ≤ φ ( m ) ) 使 得 a x k ≡ a x l ( m o d   m ) 由 于 ( a , m ) = 1 , 得 x k ≡ a x l ( m o d   m ) 取 自 模 m 的 一 个 既 约 剩 余 系 , 矛 盾 设S=\{x_1,1,x_2,...x_{\varphi(m)}\}为一个既约剩余系, \\构造S'=\{ax_1,ax_2,...a_{\varphi(m)}\} \\由于(x_i,m)=1,(a,m)=1,得(ax_i,m)=1 \\若存在x_k和x_l(1\leq k≠l\leq\varphi(m))使得ax_k≡ax_l(mod\ m) \\由于(a,m)=1,得x_k≡ax_l(mod\ m)取自模m的一个既约剩余系,矛盾 S={x1,1,x2,...xφ(m)}S={ax1,ax2,...aφ(m)}(xi,m)=1,(a,m)=1,(axi,m)=1xkxl(1k=lφ(m))使axkaxl(mod m)(a,m)=1xkaxl(mod m)m

定理

若 m 1 和 m 2 是 两 个 互 素 的 正 整 数 , 若 x 遍 历 m 1 的 一 个 既 约 剩 余 系 , 若 y 遍 历 m 2 的 一 个 既 约 剩 余 系 则 m 1 y + m 2 x 也 遍 历 模 m 1 m 2 的 一 个 既 约 剩 余 系 若m_1和m_2是两个互素的正整数, \\若x遍历m_1的一个既约剩余系,若y遍历m_2的一个既约剩余系 \\则m_1y+m_2x也遍历模m_1m_2的一个既约剩余系 m1m2xm1ym2m1y+m2xm1m2

证明

首 先 由 完 全 剩 余 系 的 性 质 知 m 2 x + m 1 y 模 m 1 m 2 两 两 不 同 余 其 次 , 证 明 当 ( x , m 1 ) = 1 , ( y , m 2 ) = 1 时 , ( m 2 x + m 1 y , m 1 m 2 ) = 1 ( 证 明 如 下 ) 由 于 ( m 2 , m 1 ) = 1 得 ( m 2 x , m 1 ) = 1 , ( m 1 y , m 2 ) = 1. 则 有 ( m 2 x + m 1 y , m 1 ) = ( m 2 x , m 1 ) = 1 ( m 2 x + m 1 y , m 2 ) = ( m 1 x , m 2 ) = 1 有 ( m 2 x + m 1 y , m 1 m 2 ) = 1 最 后 证 明 m 1 m 2 的 任 意 一 个 既 约 剩 余 系 都 可 以 表 示 为 m 2 x + m 1 y , 其 中 ( x , m 1 ) = 1 , ( y , m 2 ) = 1. 即 若 有 ( a , m 1 m 2 ) = 1 , 有 a ≡ m 2 x + m 1 y ( m o d   m 1 m 2 ) , ( x , m 1 ) = 1 , ( y , m 2 ) = 1 设 整 数 a 满 足 ( a , m 1 m 2 ) = 1 , 因 m 2 x + m 1 y 遍 历 m 1 m 2 的 一 个 完 全 剩 余 系 , 则 存 在 x , y , 使 得 a ≡ m 2 x + m 1 y ( m o d   m 1 m 2 ) 因 此 ( m 2 x + m 1 y , m 1 m 2 ) = 1 由 最 大 公 因 数 的 性 质 ( x , m 1 ) = ( m 2 x , m 1 ) = ( m 2 x + m 1 y , m 1 ) = 1 ( y , m 2 ) = ( m 1 y , m 2 ) = ( m 1 y + m 2 x , m 2 ) = 1 首先由完全剩余系的性质知m_2x+m_1y模m_1m_2两两不同余 \\其次,证明当(x,m_1)=1,(y,m_2)=1时,(m_2x+m_1y,m_1m_2)=1 \\(证明如下)由于(m_2,m_1)=1得(m_2x,m_1)=1,(m_1y,m_2)=1.则有 \\(m_2x+m_1y,m_1)=(m_2x,m_1)=1 \\(m_2x+m_1y,m_2)=(m_1x,m_2)=1 \\有(m_2x+m_1y,m_1m_2)=1 \\最后证明m_1m_2的任意一个既约剩余系都可以表示为m_2x+m_1y, \\其中(x,m_1)=1,(y,m_2)=1. \\即若有(a,m_1m_2)=1,有 \\a≡m_2x+m_1y(mod\ m_1m_2),(x,m_1)=1,(y,m_2)=1 \\设整数a满足(a,m_1m_2)=1,因m_2x+m_1y遍历m_1m_2的一个完全剩余系, \\则存在x,y,使得a≡m_2x+m_1y(mod\ m_1m_2) \\因此(m_2x+m_1y,m_1m_2)=1 \\由最大公因数的性质 \\(x,m_1) = (m_2x,m_1)=(m_2x+m_1y,m_1)=1 \\(y,m_2) = (m_1y,m_2)=(m_1y+m_2x,m_2)=1 m2x+m1ym1m2(x,m1)=1,(y,m2)=1(m2x+m1y,m1m2)=1(m2,m1)=1(m2x,m1)=1,(m1y,m2)=1.(m2x+m1y,m1)=(m2x,m1)=1(m2x+m1y,m2)=(m1x,m2)=1(m2x+m1y,m1m2)=1m1m2m2x+m1y(x,m1)=1,(y,m2)=1.(a,m1m2)=1,am2x+m1y(mod m1m2),(x,m1)=1,(y,m2)=1a(a,m1m2)=1,m2x+m1ym1m2x,y使am2x+m1y(mod m1m2)(m2x+m1y,m1m2)=1(x,m1)=(m2x,m1)=(m2x+m1y,m1)=1(y,m2)=(m1y,m2)=(m1y+m2x,m2)=1

推论

若 g c d ( m 1 , m 2 ) = 1 , 则 φ ( m 1 m 2 ) = φ ( m 1 ) φ ( m 2 ) 若gcd(m_1,m_2)=1,则\varphi(m_1m_2)=\varphi(m_1)\varphi(m_2) gcd(m1,m2)=1,φ(m1m2)=φ(m1)φ(m2)

欧拉函数的jisuan

定理

若 m = p 1 l 1 p 2 l 2 . . . p s l s , 其 中 p i , i = 1 , . . . s 各 不 相 同 , 则 φ ( m ) = m ∏ i = 1 s ( 1 − 1 p i ) 若m = p_1^{l_1}p_2^{l_2}...p_s^{l_s},其中p_i,i = 1,...s各不相同,则 \\\varphi(m)=m\prod_{i=1}^{s}(1-\frac{1}{p_i}) m=p1l1p2l2...psls,pi,i=1,...sφ(m)=mi=1s(1pi1)

证明

若 ( m 1 , m 2 ) = 1 , 则 φ ( m 1 m 2 ) = φ ( m 1 ) φ ( m 2 ) 若 p 是 素 数 , 则 φ ( p n ) = p n − p n − 1 φ ( m ) = φ ( p 1 l 1 ) φ ( p 2 l 2 ) . . . φ ( p s l s ) = φ ( p 1 l 1 − p 1 l 1 − 1 ) φ ( p 2 l 2 − p 2 l 2 − 1 ) . . . φ ( p s l s − p s l s − 1 ) = p 1 l 1 p 2 l 2 . . . p s l s ∏ i = 1 s ( 1 − 1 p i ) = m ∏ i = 1 s ( 1 − 1 p i ) 若(m_1,m_2)=1,则\varphi(m_1m_2)=\varphi(m_1)\varphi(m_2) \\若p是素数,则\varphi(p^n)=p^n-p^{n-1} \\\varphi(m)=\varphi(p_1^{l_1})\varphi(p_2^{l_2})...\varphi(p_s^{l_s}) \\=\varphi(p_1^{l_1}-p_1^{l_1-1})\varphi(p_2^{l_2}-p_2^{l_2-1})...\varphi(p_s^{l_s}-p_s^{l_s-1}) \\=p_1^{l_1}p_2^{l_2}...p_s^{l_s}\prod_{i=1}^{s}(1-\frac{1}{p_i}) \\=m\prod_{i=1}^{s}(1-\frac{1}{p_i}) (m1,m2)=1,φ(m1m2)=φ(m1)φ(m2)pφ(pn)=pnpn1φ(m)=φ(p1l1)φ(p2l2)...φ(psls)=φ(p1l1p1l11)φ(p2l2p2l21)...φ(pslspsls1)=p1l1p2l2...pslsi=1s(1pi1)=mi=1s(1pi1)

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值