概率统计 第二章 随机变量及其分布 2021.9.28

第二章 随机变量及其分布

为了更好的揭示随机现象的规律性并利用数学工具描述其规律,引入随机变量来描述随机试验的不同结果

随机变量的概念
定义

设E是一随机试验,S是它的样本空间,若
∀ ε ∈ S − 按 一 定 法 则 → ∃ 实 数 X ( ε ) \forall\varepsilon \in S -按一定法则\to\exists 实数X(\varepsilon) εSX(ε)
则称S上的单值实值函数 X ( ε ) X(\varepsilon) X(ε)随机变量

  • 随机变量是 S → R S\to R SR上的映射,这个映射具有如下的特点:

    • 定义域:S
    • 随机性:随机变量X的可能取值不止一个,实验前只能预知它的可能取值,但不能预知取哪个值
    • 概率特性:X以一定的概率取某个值或某些值
  • 引入随机变量后,用随机变量的等式或不等式表达随机事件

  • 在同一个样本空间可以同时定义多个随机变量

  • 随机变量的函数一般也是随机变量

随机变量的分类
  • 离散型
  • 非离散型——其中一种类型:连续型

2.1 随机变量的分布函数

随机变量的分布函数
定义

设X为随机变量,对每个实数x,随机事件 X ≤ x X\leq x Xx的概率
P ( X ≤ x ) P(X\leq x) P(Xx)
定义了一个x的实值函数,称为随机变量X的分布函数,记为F(x),即
F ( x ) = P ( X ≤ x ) ,   − ∞ < x < + ∞ F(x)=P(X\leq x),\ -\infty<x<+\infty F(x)=P(Xx), <x<+

  • 注意:分布函数的定义域: − ∞ < x < + ∞ -\infty<x<+\infty <x<+
分布函数的性质
  • (1) F ( x ) F(x) F(x)单调不减

  • (2) 0 ≤ F ( x ) ≤ 1 0\leq F(x)\leq1 0F(x)1,且 lim ⁡ x → + ∞ F ( x ) = 1 , lim ⁡ x → − ∞ F ( x ) = 0 \lim\limits_{x \to +\infty}F(x)=1,\lim\limits_{x \to -\infty}F(x)=0 x+limF(x)=1,xlimF(x)=0

  • (3) F ( x ) F(x) F(x)右连续,即 F ( x + 0 ) : = lim ⁡ t → x + 0 F ( t ) = F ( x ) F(x+0):=\lim\limits_{t \to x +0}F(t)=F(x) F(x+0):=tx+0limF(t)=F(x)

    • 反之,若存在 − ∞ < x < + ∞ -\infty<x<+\infty <x<+上的实函数F(x),满足以上条件1,2,3,则F(X)一定是某随机变量X的分布函数
    • 即,1,2,3是F(x)是一个随机变量的分布函数的充要条件
      • 可以这样思考:1规定了概率的非负性
      • 2规定了概率的规范性
      • 3有什么用呢???思考(可能是使F(x)同时满足离散型和连续性随机变量的分布吧)

    利用分布函数可以计算:
    P ( a < x ≤ b ) = P ( X ≤ b ) − P ( X ≤ a ) = F ( b ) − F ( a ) P(a<x\leq b)=P(X\leq b)-P(X\leq a) \\=F(b)-F(a) P(a<xb)=P(Xb)P(Xa)=F(b)F(a)

  • P ( a ≤ x ≤ b ) = F ( b ) − F ( a − 0 ) P(a\leq x\leq b)=F(b)-F(a-0) P(axb)=F(b)F(a0)

  • P ( a < x < b ) = F ( b − 0 ) − F ( a ) P(a<x<b)=F(b-0)-F(a) P(a<x<b)=F(b0)F(a)

  • P ( a ≤ x < b ) = F ( b − 0 ) − F ( a − 0 ) P(a\leq x< b)=F(b-0)-F(a-0) P(ax<b)=F(b0)F(a0)

2.3 离散型随机变量及其概率分布

离散型随机变量的概念
定义

若随机变量X的可能取值是有限多个无穷可列个,则称X为离散型随机变量

描述离散型随机变量的概率特性常用它的概率分布分布律,即
P ( X = x k ) = p k ,   k = 1 , 2 , . . . P(X = x_k)=p_k,\ k = 1,2,... P(X=xk)=pk, k=1,2,...
概率分布的性质:

  • 非负性: p k ≥ 0 , k = 1 , 2 , . . . p_k \geq 0 , k = 1,2,... pk0,k=1,2,...
  • 规范性: ∑ k = 1 ∞ p k = 1 \sum_{k=1}^{\infty}p_k=1 k=1pk=1
离散型随机变量的分布函数

F ( x ) = P ( X ≤ x ) ( 分 布 函 数 的 定 义 ) = P ( ∪ x k ≤ x ( X = x k ) ) = ∑ x k ≤ x P ( X = x k ) = ∑ x k ≤ x p k p k = P ( X = x k ) = F ( x k ) − F ( x k − 1 ) F(x)=P(X\leq x)(分布函数的定义) \\=P(\cup_{x_k\leq x}(X = x_k)) \\=\sum_{x_k\leq x}P(X = x_k) \\=\sum_{x_k\leq x}p_k \\p_k=P(X= x_k)=F(x_k)-F(x_{k-1}) F(x)=P(Xx)=P(xkx(X=xk))=xkxP(X=xk)=xkxpkpk=P(X=xk)=F(xk)F(xk1)

F(X)是分段阶梯函数,在X的可能取值 x k x_k xk处发生间断,间断点为第一类跳跃间断点,在间断点处有跃度 p k p_k pk

  • 离散型随机变量:用概率分布比用分布函数计算概率更方便

  • 一个结论: ∑ k = r ∞ C k − 1 r − 1 p r ( 1 − p ) k − r = 1 \sum_{k = r}^{\infty}C_{k-1}^{r-1}p^r{(1-p)}^{k-r}=1 k=rCk1r1pr(1p)kr=1

    证明过程利用幂级数在收敛域内可逐项求导的性质:
    证 明 : 当 ∣ x ∣ < 1 : ∑ k = 1 ∞ x k − 1 = 1 1 − x ∑ k = 2 ∞ ( k − 1 ) x k − 2 = 1 ( 1 − x ) 2 ∑ k = 3 ∞ ( k − 1 ) ( k − 2 ) x k − 3 = 2 ( 1 − x ) 3 ⇒ ∑ k = 3 ∞ C k − 1 2 x k − 3 = 1 ( 1 − x ) 3 归 纳 地 : ∑ k = r ∞ C k − 1 r − 1 x k − r = 1 ( 1 − x ) r 令 x = 1 − p ⇒ ∑ k = r ∞ C k − 1 r − 1 ( 1 − p ) k − r = 1 ( 1 − ( 1 − p ) ) r = 1 p r ⇒ ∑ k = r ∞ C k − 1 r − 1 p r ( 1 − p ) k − r = 1 证明:当|x|<1:\sum_{k = 1}^{\infty}x^{k-1}=\frac{1}{1-x} \\ \sum_{k = 2}^{\infty}(k-1)x^{k-2}=\frac{1}{{(1-x)}^2} \\ \sum_{k = 3}^{\infty}(k-1)(k-2)x^{k-3}=\frac{2}{{(1-x)}^3} \\\Rightarrow\sum_{k = 3}^{\infty}C_{k-1}^{2}x^{k-3}=\frac{1}{{(1-x)}^3} \\归纳地:\sum_{k = r}^{\infty}C_{k-1}^{r-1}x^{k-r}=\frac{1}{{(1-x)}^r} \\令x = 1-p\Rightarrow\sum_{k = r}^{\infty}C_{k-1}^{r-1}{(1-p)}^{k-r}=\frac{1}{{(1-(1-p))}^r}=\frac{1}{{p}^r} \\\Rightarrow\sum_{k = r}^{\infty}C_{k-1}^{r-1}p^r{(1-p)}^{k-r}=1 x<1k=1xk1=1x1k=2(k1)xk2=(1x)21k=3(k1)(k2)xk3=(1x)32k=3Ck12xk3=(1x)31k=rCk1r1xkr=(1x)r1x=1pk=rCk1r1(1p)kr=(1(1p))r1=pr1k=rCk1r1pr(1p)kr=1

2.4 常见的离散型随机变量的分布

(1)0-1分布

  • 随机试验只有两个可能的结果

  • 应用:产品是否合格、人口性别统计、系统是否正常、电力消耗是否超负荷……

  • 分布律可以写成:
    P ( X = k ) = p k ( 1 − p ) 1 − k , k = 0 , 1 P(X=k)=p^k{(1-p)}^{1-k},k=0,1 P(X=k)=pk(1p)1k,k=0,1

(2)二项分布

Bernoulli试验概型
n重Bernoulli试验概型:
  • 将随机试验重复n次
  • 每次试验感兴趣的事件为A(即可看作每次试验有两个可能的结果: A , A ‾ A,\overline{A} A,A),设 P ( A ) = p ,   0 < p < 1 P(A)=p,\ 0<p<1 P(A)=p, 0<p<1
  • 每次试验的结果与其他次试验无关——称为这n次试验是相互独立的
n重Bernoulli试验感兴趣的问题为:

在n次试验中事件A出现k次的概率,记为 P n ( k ) P_n(k) Pn(k)。若 P ( A ) = p P(A)=p P(A)=p,则
P n ( k ) = P ( X = k ) = C n k p k ( 1 − p ) n − k ,   k = 0 , 1 , . . . , n P_n(k)=P(X = k)=C_{n}^kp^k{(1-p)}^{n-k},\ k=0,1,...,n Pn(k)=P(X=k)=Cnkpk(1p)nk, k=0,1,...,n
称X服从参数为n , p的二项分布,记作
X ∼ B ( n , p ) X\sim B(n,p) XB(n,p)

  • 0-1分布是n=1的二项分布
  • 一个启示:小概率事件虽不易发生,但重复次数多了,就成了大概率事件
Poisson定理

lim ⁡ n → ∞ n p n = λ > 0 \lim\limits_{n \to \infty}np_n=\lambda>0 nlimnpn=λ>0,则对固定的k,
lim ⁡ n → ∞ C n k p n k ( 1 − p ) n − k = e − λ λ k k ! ,    k = 0 , 1 , 2 , . . . \lim\limits_{n \to \infty}C_n^kp_n^k{(1-p)}^{n-k}=e^{-\lambda}\frac{{ \lambda}^k}{k!},\ \ k=0,1,2,... nlimCnkpnk(1p)nk=eλk!λk,  k=0,1,2,...
Possion定理说明:若 X ∼ B ( n , p ) X\sim B(n,p) XB(n,p),则当n较大,p较小,而 n p = λ np=\lambda np=λ适中,则可以用近似公式:
C n k p k ( 1 − p ) n − k ≈ e − λ λ k k ! ,    k = 0 , 1 , 2 , . . . C_n^kp^k{(1-p)}^{n-k}\approx e^{-\lambda}\frac{{ \lambda}^k}{k!},\ \ k=0,1,2,... Cnkpk(1p)nkeλk!λk,  k=0,1,2,...
在实际计算中,当 n ≥ 20 , p ≤ 0.05 n\geq20, p\leq0.05 n20,p0.05时,可用上述公式近似计算;而当 n ≥ 100 , n p ≤ 10 n\geq 100, np \leq 10 n100,np10时, 精度更好

(3)Poisson分布

在Poisson定理中, e − λ λ k k ! > 0 e^{-\lambda}\frac{{ \lambda}^k}{k!}>0 eλk!λk>0
∑ k = 0 ∞ e − λ λ k k ! = e − λ ∑ k = 0 ∞ λ k k ! = e − λ ( 1 + λ + λ 2 2 ! + λ 3 3 ! + . . . ) = e − λ ⋅ e λ = 1 ( 用 到 了 e λ 的 泰 勒 展 开 公 式 ) \sum_{k=0}^{\infty}e^{-\lambda}\frac{{ \lambda}^k}{k!}=e^{-\lambda}\sum_{k=0}^{\infty}\frac{{ \lambda}^k}{k!}\\=e^{-\lambda}(1+\lambda+\frac{\lambda^2}{2!}+\frac{\lambda^3}{3!}+...)=e^{-\lambda}·e^{\lambda}=1 \\(用到了e^{\lambda}的泰勒展开公式) k=0eλk!λk=eλk=0k!λk=eλ(1+λ+2!λ2+3!λ3+...)=eλeλ=1eλ
由此产生了一种离散型随机变量的概率分布——Poisson分布

Poisson分布( ∏ ( λ ) 或 P ( λ ) \prod (\lambda)或P(\lambda) (λ)P(λ)

若有:
P ( X = k ) = e − λ λ k k ! ,   k = 0 , 1 , 2... P(X=k)=e^{-\lambda}\frac{{ \lambda}^k}{k!},\ k = 0,1,2... P(X=k)=eλk!λk, k=0,1,2...
其中λ > 0是常数,则称X服从参数为 λ 的Poisson分布,记作 ∏ ( λ ) 或 P ( λ ) \prod (\lambda)或P(\lambda) (λ)P(λ)

应用场合:

在一定时间间隔内:

  • 电话总机接到的电话次数;
  • 一匹布上的疵点个数;
  • 大卖场的顾客数;
  • 市级医院的急诊病人数;
  • 一个容器中的细菌数;
  • 某一地区发生的交通事故的次数;
  • 放射性物质发出的粒子数;
  • 一本书中每页印刷错误的个数;
  • 等等

都可以看作是源源不断出现的随机质点流,若它们满足一定的条件,则成为Poisson流,在长为 t 的时间内出现的质点数 X t ∼ P ( λ t ) X_t\sim P(\lambda t) XtP(λt)

实际推断原理:

“小概率事件在一次试验中实际上不可能发生”

设一次试验中,事件A发生的概率 P ( A ) = ε P(A)=\varepsilon P(A)=ε,把试验独立地重复做n次,求事件A至少发生一次的概率:

记X为n次试验中事件A发生的次数,令B = 事件A至少发生一次,

P ( B ) = 1 − P ( B ‾ ) = 1 − P { X = 0 } = 1 − C n 0 ε 0 ( 1 − ε ) n P(B)=1-P(\overline{B})=1-P\{X=0\}=1-C_n^0\varepsilon^0(1-\varepsilon)^n P(B)=1P(B)=1P{X=0}=1Cn0ε0(1ε)n

n → ∞ n \to \infty n时, 1 − ( 1 − ε ) n → 1 1-(1-\varepsilon)^n\to 1 1(1ε)n1

这说明,当n充分大时,事件A迟早要发生。从而得出一个重要结论:“小概率事件在大量重复试验中是迟早要发生的”。因此,在试验次数很大的情况下,小概率事件是不容忽视的。这个结论在实际中很有用。

警示:

  • 恶有恶报,善有善报,不是不报时侯没到,时侯一到一定要报
  • 常走河边必湿鞋
  • 多行不义必自毙
  • ……

(4)超几何分布

设一批产品中有M件正品,N件次品,从中任意取n件,则取到的次品数X是一个离散型随机变量,它的概率分布为:
P { X = k } = C N k C M n − k C M + N n ,    k = 0 , 1 , 2 , . . . , l ,    l = m i n { n , N } P\{X = k\}=\frac{C_N^kC_M^{n-k}}{C_{M+N}^n},\ \ k = 0,1,2,...,l,\ \ l=min\{n,N\} P{X=k}=CM+NnCNkCMnk,  k=0,1,2,...,l,  l=min{n,N}

应用:

产品的质量检查与控制等

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值