两个背包问题都可以直接套用模板,基本流程都是新建一个dp一维数组,思考dp数组的初值,可以根据如下规律设定初值:
不同的题目,所要的答案不同,比如:
- 方案数,最大、最小值,数字个数,能否构成?
这也就意味着dp数组的值可以是数值,也可以是布尔类型。
另外,同样是数值的情况下,不同的要求也会造成不同的初始值f[0][0]:
- 能否构成:f[0] = True,0可以构成0。
- 方案数:f[0] = 1,0组成0只有一种方案。
- 数字个数:f[0] = 0,0组成0没有使用数字。
- 最大、最小值:问题一般会回归到方案数或数字个数问题,一般会使用到max/min函数约束答案,而且会使用±inf初始化来表示极端情况。比如力扣279求最小数量。
完成dp数组的初始化之后,根据是01背包还是完全背包来选择遍历模板,一般来说,01背包采用倒序遍历,完全背包采用正序遍历,原因是正序遍历会用到之前已经修改过的结果,相当于选取的还是当前的结果,表示可以重复选择。
遍历模板如下:
01背包:
for (int x : coins){
for (int i = amount; i >= x; i--) {
dp[i] = dp[i] + dp[i - x];//(可以修改为具体的逻辑)
}
}
完全背包:
for (int x : coins){
for (int i = x; i <= amount; i++) {
dp[i] = dp[i] + dp[i - x];//(可以修改为具体的逻辑)
}
}
返回值一般就是dp[amount];有些情况可能要做相应的判断。