最短路径模板

单源最短路

描述:求1号到n号最短路

适用范围:只有一个起点

算法适用范围边权值复杂度(N:点数 M:边数)来源
朴素Dijkstra稠密图+O(N^2)贪心
堆优化Dijkstra算法稀疏图+O(mlogn)贪心
Bellman_Ford算法-O(nm)离散数学
SPFA-一般O(m),最坏O(nm)

朴素Dijkstra算法

算法描述

  1. dis[st] = 0,dis[i] = +无穷
  2. for(i : n) // S:当前已确定最短的点
    ​ 将不在S中的最近的点t加入S
    ​ t – > S
    ​ 用t更新其他点的距离 dis[x] > dis[t] + w

代码实现

int dijkstra(){
    memset(dis, 0x3f, sizeof dis);
    //把所有距离初始化为正无穷
    dis[1] = 0;
    //起点记为0
    
    for(int i = 0; i < n; i ++){
        int t = -1;

        for(int j = 1; j <= n; j ++){//找到集合外距离最近的点t
            if(!st[j] &&(t == -1 || dis[t] > dis[j])){
                t = j;
            }
        }
        
        st[t] = true;//把t加到集合中去
        
        for(int j = 1; j <= n; j ++){//用t更新其他的点
            dis[j] = min(dis[j], dis[t] + g[t][j]);
        }
    }
    
    if(dis[n] == 0x3f3f3f3f) return -1;
    return dis[n];
}

堆优化Dijkstra算法

算法描述

每轮寻找最小的点可以用堆来实现 O(1)
堆中修改一个数时间复杂度 O(logn)
一共修改m次 O(mlogn)

堆的实现

1.手写堆 可以修改
2.优先队列 不支持修改,因此每次可以新写一个加入,问题冗余

代码实现

#include <iostream>
#include <cstring>
#include <queue>

using namespace std;

typedef pair<int, int> PII;
const int N = 150010;
int n, m;
int h[N], w[N], ne[N], e[N], idx;
bool st[N];
int dis[N];

void add(int x, int y, int z)
{
    w[idx] = z;
    e[idx] = y;
    ne[idx] = h[x];
    h[x] = idx ++;
}

int dijkstra()
{
    memset(dis, 0x3f, sizeof dis);
    dis[0] = 1;
    priority_queue<PII, vector<PII>, greater<PII>> heap;
    
    heap.push({0, 1});//0为距离,1为起点
    
    while(heap.size())
    {
        PII k = heap.top();
        heap.pop();
        int ver = k.second, distance = k.first;
        if(st[ver]) continue;
        st[ver] = true;
        
        for(int i = h[ver]; i != -1; i = ne[i])//用当前点更新其他点
        {
            int j = e[i];
            if(dis[j] > distance + w[i]){
                dis[j] = distance + w[i];
                heap.push({dis[j], j});
            }
        }
    }
    if(dis[n] == 0x3f3f3f3f) return -1;
    else return dis[n];
}

Bellman-Ford算法

算法描述
for n 次
​ 备份
​ for 所有边 a,b,w
​ dis[b] = min(dis[b], dis[a] + w) //松弛操作

代码实现

const int N = 510, M = 10010;

struct Edge {
    int a;
    int b;
    int w;
} e[M];//把每个边保存下来即可
int dist[N];
int back[N];//备份数组防止串联
int n, m, k;//k代表最短路径最多包涵k条边

int bellman_ford() {
    memset(dist, 0x3f, sizeof dist);
    dist[1] = 0;
    for (int i = 0; i < k; i++) {//k次循环
        memcpy(back, dist, sizeof dist);
        for (int j = 0; j < m; j++) {//遍历所有边
            int a = e[j].a, b = e[j].b, w = e[j].w;
            dist[b] = min(dist[b], back[a] + w);
            //使用backup:避免给a更新后立马更新b, 这样b一次性最短路径就多了两条边出来
        }
    }
    if (dist[n] > 0x3f3f3f3f / 2) return -1;
    else return dist[n];

}

SPFA算法

算法描述

首先:将起点–>queue
​ while(queue 不空)
​ ① t <-- q.front()
​ q.pop()
​ ② 更新所有t的出边t w -->b

代码实现

const int N = 100010;
int n, m;
int h[N], e[N], ne[N], w[N], dis[N], cur;
bool st[N];

void add(int a, int b, int c)
{
    e[cur] = b;
    w[cur] = c;
    ne[cur] = h[a];
    h[a] = cur ++;
}

int spfa()
{
    memset(dis, 0x3f, sizeof dis);
    dis[1] = 0;
    st[1] = true;
    queue<int> q;
    q.push(1);
    
    while(q.size())
    {
        int t = q.front();
        q.pop();
        st[t] = false;
        
        for(int i = h[t]; i != -1; i = ne[i])
        {
            int j = e[i];
            if(dis[j] > dis[t] + w[i])
            {
                dis[j] = dis[t] + w[i];
                if(!st[j])
                {
                    q.push(j);
                    st[j] = true;
                }
            }
        }
    }
    
    if(dis[n] == 0x3f3f3f3f) return -1;
    else return dis[n];
    
}

多源汇最短路

有许多不同的起点

算法复杂度来源
Ford算法O(N^3)DP

Floyd算法

	for(int k = 0; k <= n; k ++)
		for(int i = 0; i <= n; i ++)
			for(int j = 0; j <= n; j ++)
				e[i][j] = min(e[i][j], e[i][k] + e[k][j]);
}

总结

用一句话总结:单源最短路优先使用SPFA,SPFA通不过使用堆优化Dijkstra,多源最短路径使用Ford。

  • 2
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值