题意,自己看
这种结论题,我没有积累
所以,我只能打表找规律
一看这个题目
就能想起来gcd,然后就是gcd(n, m)==d,然后只要不是d的倍数,他都凑不出来
然后发现,题目里面说,肯定有解,尴了个大尬,然后肯定就gcd(n, m) ==1,然后有一个裴蜀定理,都知道吧 ap + bq = 1(a和b一定是整数,但是不一定是正整数),然后就是如果想凑出来m的话,就是
amp + bmq ==m, 然后(am-q)p + (bm+p)q ==m,就可以证明出来,对于上式可以递归,每次让大的那个系数变小一些,小的那个变大一些,然后慢慢的,只要m足够大,总能变成两个正整数,也就是,肯定有从某个m开始的,以后所有的数都能被表示出来,还是正数
对于本题结论证明见此博客
然后继续看我们怎么打表
#include <iostream>
using namespace std;
//给定一个m,是否能用p和q凑出来
bool dfs(int m,int p,int q)
{
if(!m) return true;
if(m >= p && dfs(m - p,p,q)) return true;
if(m >= q && dfs(m - q,p,q)) return true;
return false;
}
int main()
{
int p,q;
cin >> p >> q;
int res = 0;
for(int i = 1; i <= 1000;i ++)//大于1000的话,我们就暂且认为,都可以被表示
{
if(!dfs(i,p,q)) res = i;
}
cout << res << endl;
return 0;
}
然后我们就可以发现,当n=3的时候,如果m多加1,结果就会+2,n=4的时候+3,n=5的时候+4
由于枚举n或者m都是一样的,所以,结果应该包括(n-1)(m-1) +x,然后我们带入之后发现,x=-1
最后答案就是(n-1)(m-1) - 1