深度学习(6): RNN

本文深入探讨了循环神经网络(RNN),包括基本的RNN结构、Elman和Jordan网络、双向RNN、LSTM和GRU。解释了LSTM的工作原理,以及在序列学习中的挑战和解决方案,如梯度消失问题。此外,还讨论了RNN在多种任务中的应用,如情感分析、语音识别和机器翻译,并对比了RNN与结构化学习方法。
摘要由CSDN通过智能技术生成

Recurrent Neural Network

  • slot filling

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

将一个词输入进去,输出的为该词属于slot的概率分布

在这里插入图片描述

input相同词的slot不同

在这里插入图片描述
在这里插入图片描述

每一个hidden layer 产生的 output会被存储在a1和a2中,再输入其他input时,memory 也会被考虑

在这里插入图片描述

第一次输入

将sequence第一组input输入到neural network中,设定memory的initial value 为0.所有的节点权值为1,无偏移量,所有的activation functions 都是线性的。

在这里插入图片描述

经过绿色的节点的计算,每个绿色节点的output都为2
在这里插入图片描述
最后y1和y2的output为4,同时2,2会被存储在memory中。
在这里插入图片描述
在这里插入图片描述

第二次输入

在这里插入图片描述

对于RNN,即使输入的input是一样的,它的output也可能不一样

第三次输入

在这里插入图片描述

changing the sequence order will change the output

在这里插入图片描述

同一个network在三个时间点被使用了三次,对于第二次输入来说,taipei这个词产生的output会同时考虑储存在a1中arrive的特征,从而产生一个关于arrive Taipei这个词组的output

在这里插入图片描述
在这里插入图片描述

Elman Network & Jordan Network

在这里插入图片描述

Jordan Network 储存的是output的值,在target上有更好的performance

Bidirectional RNN (可以是双向的)

可以同时train 正向和逆向的NN,把两个nn的output拿出来产生最后的y
在这里插入图片描述
好处:产生output产生的范围比较广,对于正向的nn,它考虑的只是input前sequence的所有特征,对于双向,考虑了前后所有时刻的input

LSTM Long short-term Memory

在这里插入图片描述

input gate 和output gate 可以打开或关闭控制memory变量的输入与输出

四个input

  • 想要被存入memory cell的值,depend on input gate
  • 操控input gate 的讯号
  • 操控output gate 的讯号
  • 操控 forget gate的讯号
  • 三个gate是打开还是关闭由学习得到

sigmoid 的值表示被打开的程度,即概率

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值