前言
暴力模式匹配算法的最坏时间复杂度为O(nm),其中n和m分别为主串和模式串的长度。
改进的模式匹配算法——KMP算法
上图的匹配过程,在第三趟匹配中,i=7、j=5的字符比较不等,于是又从i=4、j=1重新开始比较。仔细观察会发现,i=4和j=1,i=5和j=1及i=6和j=1这三次比较都是不必进行的,因为从第三趟部分匹配的结果可知,主串中第4、5和6个字符是’b’、‘c’和’a’。因为模式中第一个字符是‘a’,因此它无需再和这三个字符进行比较。而仅需将模式向右滑动3个字符的位置而继续进行i=7、j=2时的字符比较 即可。
字符串的前缀后缀和部分匹配值
KMP算法的原理
对算法的改进方法:
已知:右移位数 = 已匹配的字符数 - 对应的部分匹配值
写成:Move=(j-1)-PM[j-1]
使用部分匹配值时,每当匹配失败,就去找它前一个元素的部分匹配值,这样使用起来有些不方便,所以将PM表右移一位,这样哪个元素匹配失败,直接看它部分匹配值即可。
将上例中字符串‘abcac’的PM表右移一位,就得到了next数组:
KMP算法进一步优化
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<math.h>
#include<bitset>
#include<limits.h>
#define ls (p<<1)
#define rs (p<<1|1)
#define mid (l+r>>1)
#define over(i,s,t) for(register int i=s;i<=t;++i)
#define lver(i,t,s) for(register int i=t;i>=s;--i)
//#define int __int128
using namespace std;
#undef mid
typedef long long ll;
typedef unsigned long long ull;
//typedef pair<int,int> PII;
const int N=1e6+7;
const int mod=1e9+7;
const ll INF=1e15+7;
const double EPS=1e-10;
const int p=131;//13331
int nex[N];
int n,m,len,cnt;
int j;
char a[N];
void calc_nex()
{
nex[1]=0;
for(int i=2,j=0;i<=n;++i){
while(j>0&&a[i]!=a[j+1])j=nex[j];
if(a[i]==a[j+1])j++;
nex[i]=j;
}
}
int main()
{
while(scanf("%d",&n)!=EOF&&n){
scanf("%s\n",a+1);
printf("Test case #%d\n",++cnt);
calc_nex();
for(int i=2;i<=n;i++){
if(i%(i-nex[i])==0&&i/(i-nex[i])>1)
printf("%d %d\n",i,i/(i-nex[i]));
}
puts("");
}
return 0;
}
下一章
树与二叉树
有帮助的话点赞 收藏加关注哦