2022 数据结构与算法《王道》学习笔记 (十一)KMP算法 详细归纳总结 改进的模式匹配算法

本文介绍了暴力模式匹配算法的不足,重点讲解了KMP算法的原理,如何通过部分匹配值避免不必要的字符比较,并展示了如何利用next数组进行优化。深入理解KMP算法在字符串处理中的应用,适合对字符串匹配感兴趣的读者。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

KMP算法参考博客


在这里插入图片描述

暴力模式匹配算法的最坏时间复杂度为O(nm),其中nm分别为主串和模式串的长度。


改进的模式匹配算法——KMP算法

上图的匹配过程,在第三趟匹配中,i=7、j=5的字符比较不等,于是又从i=4、j=1重新开始比较。仔细观察会发现,i=4和j=1,i=5和j=1及i=6和j=1这三次比较都是不必进行的,因为从第三趟部分匹配的结果可知,主串中第4、5和6个字符是’b’、‘c’和’a’。因为模式中第一个字符是‘a’,因此它无需再和这三个字符进行比较。而仅需将模式向右滑动3个字符的位置而继续进行i=7、j=2时的字符比较 即可。

字符串的前缀后缀和部分匹配值
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
KMP算法的原理
在这里插入图片描述
对算法的改进方法:
已知:右移位数 = 已匹配的字符数 - 对应的部分匹配值
写成:Move=(j-1)-PM[j-1]
使用部分匹配值时,每当匹配失败,就去找它前一个元素的部分匹配值,这样使用起来有些不方便,所以将PM表右移一位,这样哪个元素匹配失败,直接看它部分匹配值即可。
将上例中字符串‘abcac’的PM表右移一位,就得到了next数组:
在这里插入图片描述
在这里插入图片描述

KMP算法进一步优化
在这里插入图片描述


在这里插入图片描述

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<math.h>
#include<bitset>
#include<limits.h>
#define ls (p<<1)
#define rs (p<<1|1)
#define mid (l+r>>1)
#define over(i,s,t) for(register int i=s;i<=t;++i)
#define lver(i,t,s) for(register int i=t;i>=s;--i)
//#define int __int128
using namespace std;
#undef mid
typedef long long ll;
typedef unsigned long long ull;
//typedef pair<int,int> PII;

const int N=1e6+7;
const int mod=1e9+7;
const ll INF=1e15+7;
const double EPS=1e-10;
const int p=131;//13331

int nex[N];
int n,m,len,cnt;
int j;
char a[N];
void calc_nex()
{
    nex[1]=0;
    for(int i=2,j=0;i<=n;++i){
        while(j>0&&a[i]!=a[j+1])j=nex[j];
        if(a[i]==a[j+1])j++;
        nex[i]=j;
    }
}
int main()
{
    while(scanf("%d",&n)!=EOF&&n){
        scanf("%s\n",a+1);
        printf("Test case #%d\n",++cnt);
        calc_nex();
        for(int i=2;i<=n;i++){
            if(i%(i-nex[i])==0&&i/(i-nex[i])>1)
                printf("%d %d\n",i,i/(i-nex[i]));
        }
        puts("");
    }
    return 0;
}



下一章
树与二叉树

树与二叉树 数据结构与算法专栏

有帮助的话点赞 收藏加关注哦

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小超嵌入式笔记

感激不尽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值