离均差平方和SS 公式推导过程

博客内容为可收藏的搬运信息,虽未明确具体内容,但强调了其可收藏性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

搬运 可收藏

18872932e2c447a7a3fc414926d47243.png

 b4418ca38a32469cb0122d22c50f0ff4.png

 

在R语言中,单因素方差分析(ANOVA)中的总编一离均差平方和(Total Sum of Squares, SST)是衡量因变量变异的总和的一个指标。它表示了所有观测值与因变量整体平均值之差的平方和SST可以分解为两部分:组内变异(Within-group variability)和组间变异(Between-group variability)。 在进行单因素方差分析时,通常我们关注的是组间变异(SSB,Sum of Squares Between)和组内变异(SSW,Sum of Squares Within)。组间变异反映了因变量的平均值在不同组之间的差异,而组内变异则反映了组内各观测值之间的差异。 在R语言中,可以通过`aov()`函数进行方差分析,并用`summary()`函数查看分析结果。在输出的结果中,SST的分解成分通常被表示为以下几部分: - 总变异(Total Sum of Squares,即SST) - 组间变异(Sum of Squares Between groups) - 组内变异(Sum of Squares Within groups) 具体来说,你可以通过以下步骤来查看SST以及分解后的SSB和SSW: 1. 首先,你需要有一个数据集,并确定因变量和自变量。 2. 使用`aov()`函数对数据进行方差分析。 3. 应用`summary()`函数输出方差分析的结果。 4. 在`summary()`函数的输出中找到SST、SSB和SSW的具体值。 下面是一个简单的示例代码: ```r # 假设data是你的数据集,response是因变量,factor是自变量 fit <- aov(response ~ factor, data=data) # 输出方差分析结果 summary(fit) ``` 在结果输出中,你会看到一个表格,列出了各个来源的平方和(Sum of Squares),自由度(Degrees of Freedom),均方(Mean Square),F值(F value)和p值(Pr(>F))。总平方和(Total SS)就是因变量值与总体均值差异的平方和,而Sum of Squares的其他部分分别对应组间和组内的平方和
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值