统计基础之概率论与数理统计(完结)

1、随机变量及其分布:
1.1、离散型随机变量(0-1分布、二项分布、泊松分布、几何分布)
1.1.1、0-1分布
0—1分布就是n=1情况下的二项分布。

1.1.2、二项分布(伯努利分布)
二项分布就是重复n次独立的伯努利试验。
如果存在X~B(n, p)这样一个二项分布,也就是说X是呈现出二项分布的随机变量,n表示试验的总数,p表示每个试验中得到成功结果的概率,那么X的期望值E(X)=np,方差Var(X)=np(1-p)。
多项分布是二项式分布的推广。

1.1.3、泊松分布
泊松分布公式
在这里插入图片描述
泊松分布的期望为E(X)=λ,方差D(X)=λ
在这里插入图片描述1.1.4 、几何分布
几何分布是帕斯卡分布当r=1时的特例。
在这里插入图片描述1.2、连续型随机变量及其分布(均匀分布、指数分布、正态分布(标准正态分布)、负指数分布、伽马分布)

1.2.1、均匀分布
假设x服从[a,b]上的均匀分布,则x的概率密度函数如下
在这里插入图片描述
概率密度图像
G4ubmV0L3dlaXhpbl80NDE5ODQxNQ==,size_16,color_FFFFFF,t_70)在这里插入图片描述1.2.2、指数分布
指数分布的概率密度函数
在这里插入图片描述
指数分布的区间是[0,∞)。 如果一个随机变量X呈指数分布,则可以写作:X~ E(λ)
x是给定的时间;λ为单位时间事件发生的次数;e=2.71828。
指数分布概率密度曲线如下图:
在这里插入图片描述
指数分布具有以下特征:
(1)随机变量X的取值范围是从0到无穷;
(2)极大值在x=0处,即f(x)=λ;
(3)函数为右偏,且随着x的增大,曲线稳步递减;
(4)随机变量的期望值和方差为µ=1/λ,σ2=1/λ2。
通过对概率密度函数的积分,就可以得到相应的概率,其表达式有两种
P(X≥x)=e-λx
P(X≤x)=1-e-λx

1.2.3、正态分布,又名高斯分布。
若随机变量X服从一个数学期望为μ、方差为σ^2的正态分布,记为N(μ,σ2)。其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。当μ = 0,σ = 1时的正态分布是标准正态分布N(0,1)。
其概率密度函数为(标准正态分布,μ=0,σ=1)
在这里插入图片描述
图形特征
集中性:正态曲线的高峰位于正中央,即均数所在的位置。
对称性:正态曲线以均数为中心,左右对称,曲线两端永远不与横轴相交。
均匀变动性:正态曲线由均数所在处开始,分别向左右两侧逐渐均匀下降。
曲线与横轴间的面积总等于1,相当于概率密度函数的函数从正无穷到负无穷积分的概率为1,即图形面积为1。频率的总和为100%。

  • 12
    点赞
  • 55
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值