CINTA作业六

1.设G是群,H是G的子群。任取g1、g2∈G,则g1H=g2H当且仅当g1^(-1)g2∈H

充分性证明:

存在h1、h2∈H,使得g1h1=g2h2,则有h1=g1^(-1)g2h2,最终可得h1h2^(-1)=g1^(-1)g2,而h1h2^(-1)由于封闭性,一定属于群H,故g1^(-1)g2∈H

必要性证明:

由于g1^(-1)g2∈H,则存在h∈H,使得g1^(-1)g2=h,则有g2=g1h,即g2∈g1H,又由陪集性质可知g1H=g2H

2.如果G是群,H是G的子群,且[G:H]=2,证明对任意g∈G,gH=Hg

若g∈H,由于封闭性,gH=Hg=H

若g不属于H,由陪集性质可知,gH≠H,Hg≠H,

又因为[G:H]=2,即群G被子群H的两个陪集划分,其中一个陪集是H本身,另一个陪集记为H‘,而又因为作为陪集的gH、Hg都是不等于H的,则gH、Hg一定都等于H’,即gH=Hg=H‘

3.如果群H是群G的真子群,证明|H|≤|G|/2

根据拉格朗日定理,|G|/|H|=k,k为正整数

又因为群H是群G的真子群,则k≠1,故有|G|/|H|=k>2成立,转化后可得|H|<|G|/2

4.设群G是阶为pq的群,其中p和q是素数。证明G的任意真子群是循环群

因为p、q均是素数,能整除pq的只有1、p、q、pq,则根据拉格朗日定理,其真子群的阶有1、p、q

真子群阶为1时,即为平凡子群,显然是循环群

真子群阶为p、q时,根据拉格朗日定理推论,素数阶数的有限群一定是循环群

5.用群论证明费马小定理和欧拉定理

费马小定理:

构造在模数为素数p下的整数乘法群Zp*,其阶数为p-1

任取元素a∈Zp*,根据拉格朗日定理,则有ord(a)|p-1,即p-1=k*ord(a),k为正整数,则a^(p-1)modp=a^(k*ord(a))modp=1^kmodp=1,故得到费马小定理:a^(p-1)modp=1

欧拉定理:

构造在模数为n下的整数乘法群Zn*,Zn*={a∈[1……n-1]且gcd(a,n)=1},其阶数为欧拉函数值ϕ(n),任取元素a∈Zn*,根据拉格朗日定理,则有ord(a)|ϕ(n),即ϕ(n)=k*ord(a),k为正整数,则a^ϕ(n)modn=a^(k*ord(a)modn=1^kmodn=1,故得到欧拉定理

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值