CINTA作业九

1.证明命题11.2

证明:(1)封闭性 :任意a、b∈QRp,有a·b=QR∈QRp

(2)结合律:(a·b)·c=a·(b·c)

(3)存在单位元:单位元为1

(4)每个元素都有逆元:∀a∈QRp,存在x∈Z,使得a mod p=x²,又由a * (x^{-1})^{2} ≡ x^{2}(x^{-1})^{2}≡ 1(mod p),所以a^{-1} ≡(x^{-1})^{2} (mod p)

2.使用群论的方法证明定理11.1

证明:

Z^{*}_{p}QR_{p}的映射\phi:∀a∈Z^{*}_{p}, a→a^{2},其中a,b∈Z^{*}_{p}

\phi(a⋅b)=(ab)^{2}=a^{2}b^{2}=\phi(a)∘\phi(b),所以是群同态

QR_{p}的单位元为1,Ker\phi=1,p-1=K,是Z^{*}_{p}的正规子群

Z^{*}_{p}Z^{*}_{p}/K

所以|QR_{p}| = | Z^{*}_{p}/K| =(p-1)/2

所以定理得证

3、定义映射\phiZ^{*}_{p}→{±1}为\phi(a)=(\frac{a}{p}),∀a∈Z^{*}_{p}。证明这是一个满同态

证明:对 ∀ a , b ∈Z^{*}_{p}\phi(ab)=(ab/p)=(a/p)(b/p)=\phi(a)\phi(b) 是同态

由勒让德符号的定义可得当a为QR时,ψ(a) = 1,当a为QNR时ψ(a) = -1,故ψ是满射,综上可证ψ是一种满同态

4.设 p 是奇素数,请证明 Zp* 的所有生成元都是模 p 的二次非剩余

 假设a是Z^{*}_{p}的生成元,假设a是QR,存在a\equivx^{2}(mod p)

a^{p-1}\equivx^{2(p-1)} \equiv1(mod p)

整理为a^{(p-1)/2}\equivx^{p-1}\equiv1(mod p)

有(p-1)/2<p-1,与假设矛盾

所以a是QNR

5.证明命题11.4

(1)因为a, b ∈ Z 且不被 p 整除,当a为QR或QNR时,因为a ≡ b(mod p),所以b一定为QR或QNR,则由勒让德符号的定义易得(a/p) = (b/p) 

(2)当a为QR或QNR时,由1.的结论可得(a/p) = (b/p) = ±1,又由命题11.3得结论1可得(a/p) * (b/p) = ±1= (ab/p);当a,b其中一个为QR,一个为QNR时,(a/p) * (b/p) = -1 = (ab/p)

​(3)当a为QR或QNR时,a2一定为QR,所以(a2/p) = 1

6.给出推论11.1的完整证明

(1)p≡1 (mod 4), ∃ k ∈ Z , p = 4 k + 1 ( mod p )

由欧拉准则:(\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv (-1)^{(4k+1-1)/2}\equiv 1(mod p)=1 

(2)p≡-1 (mod 4), ∃ k ∈ Z , p = 4 k + 3 ( mod p )

(\frac{-1}{p})\equiv (-1)^{(p-1)/2}\equiv (-1)^{4k+3-1}\equiv (-1)(mod p)=-1

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值