程序员常用十种算法(9)— 弗洛伊德(Floyed)算法(最短路径问题)

程序员常用十种算法(9)— 弗洛伊德(Floyed)算法(最短路径问题)

1.弗洛伊德(Floyed)算法介绍
在这里插入图片描述

2.弗洛伊德(Floyed)算法过程
1)设置顶点 vi 到顶点 vk 的最短路径已知为 Lik,顶点 vk 到 vj 的最短路径已知为 Lkj,顶点 vi 到 vj 的路径为 Lij,则 vi 到 vj 的最短路径为:min((Lik+Lkj),Lij),vk 的取值为图中所有顶点,则可获得 vi 到 vj 的最短路径;
2)至于 vi 到 vk 的最短路径 Lik 或者 vk 到 vj 的最短路径 Lkj,是以同样的方式获得。

3.解决问题-最短路径问题
1)问题描述:
在这里插入图片描述
2).算法图解:
在这里插入图片描述在这里插入图片描述在这里插入图片描述在这里插入图片描述

3)代码:

import java.lang.reflect.Array;
import java.util.Arrays;

public class FloydAlgorithm {
    public static void main(String[] args) {
        //测试看看图是否创建成功
        char[] vertex = {'A','B','C','D','E','F','G'};
        //创建邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;
        matrix[0]=new int[]{0,5,7,N,N,N,2};
        matrix[1]=new int[]{5,0,N,9,N,N,3};
        matrix[2]=new int[]{7,N,0,N,8,N,N};
        matrix[3]=new int[]{N,9,N,0,N,4,N};
        matrix[4]=new int[]{N,N,8,N,0,5,4};
        matrix[5]=new int[]{N,N,N,4,5,0,6};
        matrix[6]=new int[]{2,3,N,N,4,6,0};

        //创建Graph对象
        Graph graph = new Graph(vertex.length, matrix, vertex);
        //调用弗洛伊德算法
        graph.floyd();
        graph.show();
    }
}
//创建图
class Graph{
    private char[] vertex;  //存放顶点的数组
    private int[][] dis; //保存,从各个顶点出发到其他顶点的距离,最后的结果也是保留在该数组
    private int[][] pre; //保存到达目标顶点的前驱顶点

    //构造器
    public Graph(int length, int[][] matrix, char[] vertex) {
        this.vertex = vertex;
        this.dis = matrix;
        this.pre = new int[length][length];
        //对pre数组初始化,注意存放的是前驱顶点的下标
        for (int i = 0; i < length; i++) {
            Arrays.fill(pre[i],i);
        }
    }

    //显示pre数组和dis数组
    public void show(){
        //为了显示便于阅读,我们优化一下输出
        char[] vertex = {'A','B','C','D','E','F','G'};
        for (int k = 0; k < dis.length; k++) {
            //优先将pre数组输出的一行
            for (int i = 0; i < dis.length; i++) {
                System.out.print(vertex[pre[k][i]] + " ");
            }
            System.out.println();
            //输出dis数组的一行数据
            for (int i = 0; i < dis.length; i++) {
                System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是"+dis[k][i]+")");
            }
            System.out.println();
            System.out.println();
        }
    }
    //弗洛伊德算法,比较容易理解,而且容易实现
    public void floyd(){
        int len = 0; //变量保存距离

        //对中间顶点遍历,k 就是中间顶点的下标[A,B,C,D,E,F,G]
        for (int k = 0; k < dis.length; k++) {
            //从i顶点开始出发[A,B,C,D,E,F,G]
            for (int i = 0; i < dis.length; i++) {
                //到达j顶点 //[A,B,C,D,E,F,G]
                for (int j = 0; j < dis.length; j++) {
                    len = dis[i][k]+dis[k][j]; //求出从i顶点出发,经过k中间顶点,到达j顶点距离
                    if (len < dis[i][j]){  //如果len小于dis[i][j]
                        dis[i][j] = len; // 更新距离
                        pre[i][j] = pre[k][j];
                    }
                }
            }
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谁偷了我的月亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>