程序员常用十种算法(9)— 弗洛伊德(Floyed)算法(最短路径问题)
1.弗洛伊德(Floyed)算法介绍
2.弗洛伊德(Floyed)算法过程
1)设置顶点 vi 到顶点 vk 的最短路径已知为 Lik,顶点 vk 到 vj 的最短路径已知为 Lkj,顶点 vi 到 vj 的路径为 Lij,则 vi 到 vj 的最短路径为:min((Lik+Lkj),Lij),vk 的取值为图中所有顶点,则可获得 vi 到 vj 的最短路径;
2)至于 vi 到 vk 的最短路径 Lik 或者 vk 到 vj 的最短路径 Lkj,是以同样的方式获得。
3.解决问题-最短路径问题
1)问题描述:
2).算法图解:
3)代码:
import java.lang.reflect.Array;
import java.util.Arrays;
public class FloydAlgorithm {
public static void main(String[] args) {
//测试看看图是否创建成功
char[] vertex = {'A','B','C','D','E','F','G'};
//创建邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0]=new int[]{0,5,7,N,N,N,2};
matrix[1]=new int[]{5,0,N,9,N,N,3};
matrix[2]=new int[]{7,N,0,N,8,N,N};
matrix[3]=new int[]{N,9,N,0,N,4,N};
matrix[4]=new int[]{N,N,8,N,0,5,4};
matrix[5]=new int[]{N,N,N,4,5,0,6};
matrix[6]=new int[]{2,3,N,N,4,6,0};
//创建Graph对象
Graph graph = new Graph(vertex.length, matrix, vertex);
//调用弗洛伊德算法
graph.floyd();
graph.show();
}
}
//创建图
class Graph{
private char[] vertex; //存放顶点的数组
private int[][] dis; //保存,从各个顶点出发到其他顶点的距离,最后的结果也是保留在该数组
private int[][] pre; //保存到达目标顶点的前驱顶点
//构造器
public Graph(int length, int[][] matrix, char[] vertex) {
this.vertex = vertex;
this.dis = matrix;
this.pre = new int[length][length];
//对pre数组初始化,注意存放的是前驱顶点的下标
for (int i = 0; i < length; i++) {
Arrays.fill(pre[i],i);
}
}
//显示pre数组和dis数组
public void show(){
//为了显示便于阅读,我们优化一下输出
char[] vertex = {'A','B','C','D','E','F','G'};
for (int k = 0; k < dis.length; k++) {
//优先将pre数组输出的一行
for (int i = 0; i < dis.length; i++) {
System.out.print(vertex[pre[k][i]] + " ");
}
System.out.println();
//输出dis数组的一行数据
for (int i = 0; i < dis.length; i++) {
System.out.print("("+vertex[k]+"到"+vertex[i]+"的最短路径是"+dis[k][i]+")");
}
System.out.println();
System.out.println();
}
}
//弗洛伊德算法,比较容易理解,而且容易实现
public void floyd(){
int len = 0; //变量保存距离
//对中间顶点遍历,k 就是中间顶点的下标[A,B,C,D,E,F,G]
for (int k = 0; k < dis.length; k++) {
//从i顶点开始出发[A,B,C,D,E,F,G]
for (int i = 0; i < dis.length; i++) {
//到达j顶点 //[A,B,C,D,E,F,G]
for (int j = 0; j < dis.length; j++) {
len = dis[i][k]+dis[k][j]; //求出从i顶点出发,经过k中间顶点,到达j顶点距离
if (len < dis[i][j]){ //如果len小于dis[i][j]
dis[i][j] = len; // 更新距离
pre[i][j] = pre[k][j];
}
}
}
}
}
}