程序员常用十种算法(8)— 迪杰斯特拉(Dijkstra)算法(最短路径问题)
1.迪杰斯特拉(Dijkstra)算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。
2.迪杰斯特拉(Dijkstra)算法过程
1)设置出发顶点为 v,顶点集合 V{v1,v2,vi…},v 到 V 中各顶点的距离构成距离集合Dis,Dis{d1,d2,di…},Dis 集合记录着 v 到图中各顶点的距离(到自身可以看作 0,v 到 vi 距离对应为 di);
2)从 Dis 中选择值最小的 di 并移出 Dis 集合,同时移出 V 集合中对应的顶点 vi,此时的 v 到 vi 即为最短路径;
3)更新 Dis 集合,更新规则为:比较 v 到 V 集合中顶点的距离值,与 v 通过 vi 到 V 集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为 vi,表明是通过 vi 到达的);
4)重复执行两步骤,直到最短路径顶点为目标顶点即可结束。
3.迪杰斯特拉(Dijkstra)算法应用-最短路径问题
1)问题描述:
2).图解
3)代码
import java.util.Arrays;
public class DijkstraAlgorithm {
public static void main(String[] args) {
char[] vertex = {'A','B','C','D','E','F','G'};
//邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;// 表示不可以连接
matrix[0]=new int[]{N,5,7,N,N,N,2};
matrix[1]=new int[]{5,N,N,9,N,N,3};
matrix[2]=new int[]{7,N,N,N,8,N,N};
matrix[3]=new int[]{N,9,N,N,N,4,N};
matrix[4]=new int[]{N,N,8,N,N,5,4};
matrix[5]=new int[]{N,N,N,4,5,N,6};
matrix[6]=new int[]{2,3,N,N,4,6,N};
//创建Graph对象
Graph graph = new Graph(vertex,matrix);
//测试,看看图的邻接矩阵是否0OK
graph.showGraph();
//测试迪杰斯特拉算法
graph.dsj(6); //G, 可以测试不同的点
graph.showDijkstra();
}
}
class Graph{
private char[] vertex; //顶点数组
private int[][] matrix; //邻接矩阵
private VisitedVertex vv; //已经访问的顶点的集合
//构造器
public Graph(char[] vertex, int[][] matrix) {
this.vertex = vertex;
this.matrix = matrix;
}
//显示结果
public void showDijkstra(){
vv.show();
}
//显示图
public void showGraph(){
for (int[] link : matrix){
System.out.println(Arrays.toString(link));
}
}
//迪杰斯特拉算法的实现
/**
*
* @param index 表示出发顶点对应的下标
*/
public void dsj(int index){
vv = new VisitedVertex(vertex.length, index);
update(index); //更新index顶点到周围顶点的距离和前驱顶点
for (int j = 0; j < vertex.length; j++) {
index = vv.updateArr(); //选择并返回新的访问顶点
update(index); //更新index顶点到周围顶点的距离和前驱结点
}
}
//更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
private void update(int index){
int len=0;
//根据遍历我们的邻接矩阵的 matrix[index]行
for (int j = 0; j < matrix[index].length; j++) {
//len含义是:出发顶点到index顶点的距离 + 从index顶点到j顶点
len = vv.getDis(index) + matrix[index][j];
//如果j顶点没有被访问过,并且len小于出发顶点到j顶点距离,就需要更新
if (!vv.in(j) && len<vv.getDis(j)){
vv.updatePre(j, index); //更新j顶点的前驱为index顶点
vv.updateDis(j, len); //更新出发顶点到j顶点的距离
}
}
}
}
//已经访问顶点集合
class VisitedVertex{
//记录各个顶点是否访问过,1表示访问过,0表示未访问,会动态更新
public int[] already_arr;
//每个下标对应的值为前一个顶点下标,会动态更新
public int[] pre_visited;
//记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其他顶点的距离,会动态更新,求的最短距离就会存放到dis
public int[] dis;
//构造器
/**
*
* @param length :表示顶点的个数
* @param index : 出发顶点对应的下标,比如G顶点,下标就是6
*/
public VisitedVertex(int length, int index){
this.already_arr = new int[length];
this.pre_visited = new int[length];
this.dis = new int[length];
//初始化dis数组
Arrays.fill(dis, 65535);
this.already_arr[index]=1; //设置出发顶点被访问过
this.dis[index] = 0 ; //设置出发顶点的访问距离为0
}
/**
* 功能:判断index顶点是否被访问
* @param index
* @return 如果访问过就返回true,否则返回false
*/
public boolean in(int index){
return already_arr[index] == 1;
}
/**
* 功能:更新出发点到index顶点的距离
* @param index
* @param len
*/
public void updateDis(int index, int len){
dis[index] = len;
}
/**
* 功能:更新pre这个顶点的前驱顶点为index顶点
* @param pre
* @param index
*/
public void updatePre(int pre, int index){
pre_visited[pre] = index;
}
/**
* 功能:返回出发顶点到index顶点的距离
* @param index
* @return
*/
public int getDis(int index){
return dis[index];
}
/**
* 继续选择并返回新的访问顶点,比如这里的G完后,就是A点作为新的访问顶点(注意不是出发顶点)
* @return
*/
public int updateArr(){
int min = 65535, index = 0;
for (int i = 0; i < already_arr.length; i++) {
if (already_arr[i] == 0 && dis[i]<min){
min = dis[i];
index = i;
}
}
//更新index顶点被访问过
already_arr[index] = 1;
return index;
}
//显示最后的结果
//即将三个数组的情况输出
public void show(){
System.out.println("==================");
//输出already_arr
for (int i : already_arr) {
System.out.print(i + " ");
}
System.out.println();
//输出pre_visited
for (int i: pre_visited){
System.out.print(i + " ");
}
System.out.println();
//输出dis
for (int i : dis){
System.out.print(i + " ");
}
System.out.println();
//为了好看最后的最短距离,我们处理
char[] vertex = {'A','B','C','D','E','F','G'};
int count = 0;
for (int i: dis){
if (i != 65535){
System.out.print(vertex[count]+"("+i+")");
}else {
System.out.println("N");
}
count++;
}
System.out.println();
}
}