程序员常用十种算法(8)— 迪杰斯特拉(Dijkstra)算法(最短路径问题)

程序员常用十种算法(8)— 迪杰斯特拉(Dijkstra)算法(最短路径问题)

1.迪杰斯特拉(Dijkstra)算法介绍
迪杰斯特拉(Dijkstra)算法是典型最短路径算法,用于计算一个节点到其他节点的最短路径。它的主要特点是以起始点为中心向外层层扩展(广度优先搜索思想),直到扩展到终点为止。

2.迪杰斯特拉(Dijkstra)算法过程
1)设置出发顶点为 v,顶点集合 V{v1,v2,vi…},v 到 V 中各顶点的距离构成距离集合Dis,Dis{d1,d2,di…},Dis 集合记录着 v 到图中各顶点的距离(到自身可以看作 0,v 到 vi 距离对应为 di);
2)从 Dis 中选择值最小的 di 并移出 Dis 集合,同时移出 V 集合中对应的顶点 vi,此时的 v 到 vi 即为最短路径;
3)更新 Dis 集合,更新规则为:比较 v 到 V 集合中顶点的距离值,与 v 通过 vi 到 V 集合中顶点的距离值,保留值较小的一个(同时也应该更新顶点的前驱节点为 vi,表明是通过 vi 到达的);
4)重复执行两步骤,直到最短路径顶点为目标顶点即可结束。

3.迪杰斯特拉(Dijkstra)算法应用-最短路径问题
1)问题描述:
在这里插入图片描述
2).图解
在这里插入图片描述
3)代码

import java.util.Arrays;

public class DijkstraAlgorithm {
    public static void main(String[] args) {
        char[] vertex = {'A','B','C','D','E','F','G'};
        //邻接矩阵
        int[][] matrix = new int[vertex.length][vertex.length];
        final int N = 65535;// 表示不可以连接
        matrix[0]=new int[]{N,5,7,N,N,N,2};
        matrix[1]=new int[]{5,N,N,9,N,N,3};
        matrix[2]=new int[]{7,N,N,N,8,N,N};
        matrix[3]=new int[]{N,9,N,N,N,4,N};
        matrix[4]=new int[]{N,N,8,N,N,5,4};
        matrix[5]=new int[]{N,N,N,4,5,N,6};
        matrix[6]=new int[]{2,3,N,N,4,6,N};
        //创建Graph对象
        Graph graph = new Graph(vertex,matrix);
        //测试,看看图的邻接矩阵是否0OK
        graph.showGraph();
        //测试迪杰斯特拉算法
        graph.dsj(6); //G, 可以测试不同的点
        graph.showDijkstra();
    }

}

class Graph{
    private char[] vertex; //顶点数组
    private int[][] matrix; //邻接矩阵
    private VisitedVertex vv; //已经访问的顶点的集合

    //构造器
    public Graph(char[] vertex, int[][] matrix) {
        this.vertex = vertex;
        this.matrix = matrix;
    }

    //显示结果
    public void showDijkstra(){
        vv.show();
    }

    //显示图
    public void showGraph(){
        for (int[] link : matrix){
            System.out.println(Arrays.toString(link));
        }
    }

    //迪杰斯特拉算法的实现

    /**
     *
     * @param index 表示出发顶点对应的下标
     */
    public void dsj(int index){
        vv = new VisitedVertex(vertex.length, index);
        update(index); //更新index顶点到周围顶点的距离和前驱顶点
        for (int j = 0; j < vertex.length; j++) {
            index = vv.updateArr(); //选择并返回新的访问顶点
            update(index); //更新index顶点到周围顶点的距离和前驱结点
        }
    }

    //更新index下标顶点到周围顶点的距离和周围顶点的前驱顶点
    private void update(int index){
        int len=0;
        //根据遍历我们的邻接矩阵的 matrix[index]行
        for (int j = 0; j < matrix[index].length; j++) {
            //len含义是:出发顶点到index顶点的距离 + 从index顶点到j顶点
            len = vv.getDis(index) + matrix[index][j];
            //如果j顶点没有被访问过,并且len小于出发顶点到j顶点距离,就需要更新
            if (!vv.in(j) && len<vv.getDis(j)){
                vv.updatePre(j, index); //更新j顶点的前驱为index顶点
                vv.updateDis(j, len); //更新出发顶点到j顶点的距离
            }
        }
    }
}

//已经访问顶点集合
class VisitedVertex{
    //记录各个顶点是否访问过,1表示访问过,0表示未访问,会动态更新
    public int[] already_arr;
    //每个下标对应的值为前一个顶点下标,会动态更新
    public int[] pre_visited;
    //记录出发顶点到其他所有顶点的距离,比如G为出发顶点,就会记录G到其他顶点的距离,会动态更新,求的最短距离就会存放到dis
    public int[] dis;

    //构造器

    /**
     *
     * @param length  :表示顶点的个数
     * @param index : 出发顶点对应的下标,比如G顶点,下标就是6
     */
    public VisitedVertex(int length, int index){
        this.already_arr = new int[length];
        this.pre_visited = new int[length];
        this.dis = new int[length];
        //初始化dis数组
        Arrays.fill(dis, 65535);
        this.already_arr[index]=1; //设置出发顶点被访问过
        this.dis[index] = 0 ; //设置出发顶点的访问距离为0
    }

    /**
     * 功能:判断index顶点是否被访问
     * @param index
     * @return  如果访问过就返回true,否则返回false
     */
    public boolean in(int index){
        return already_arr[index] == 1;
    }

    /**
     * 功能:更新出发点到index顶点的距离
     * @param index
     * @param len
     */
    public void updateDis(int index, int len){
        dis[index] = len;
    }

    /**
     * 功能:更新pre这个顶点的前驱顶点为index顶点
     * @param pre
     * @param index
     */
    public void updatePre(int pre, int index){
        pre_visited[pre] = index;
    }

    /**
     * 功能:返回出发顶点到index顶点的距离
     * @param index
     * @return
     */
    public int getDis(int index){
        return dis[index];
    }

    /**
     * 继续选择并返回新的访问顶点,比如这里的G完后,就是A点作为新的访问顶点(注意不是出发顶点)
     * @return
     */
    public int updateArr(){
        int min = 65535, index = 0;
        for (int i = 0; i < already_arr.length; i++) {
            if (already_arr[i] == 0 && dis[i]<min){
                min = dis[i];
                index = i;
            }
        }
        //更新index顶点被访问过
        already_arr[index] = 1;
        return index;
    }
    //显示最后的结果
    //即将三个数组的情况输出
    public void show(){
        System.out.println("==================");
        //输出already_arr
        for (int i : already_arr) {
            System.out.print(i + " ");
        }
        System.out.println();
        //输出pre_visited
        for (int i: pre_visited){
            System.out.print(i + " ");
        }
        System.out.println();
        //输出dis
        for (int i : dis){
            System.out.print(i + " ");
        }
        System.out.println();
        //为了好看最后的最短距离,我们处理
        char[] vertex = {'A','B','C','D','E','F','G'};
        int count = 0;
        for (int i: dis){
            if (i != 65535){
                System.out.print(vertex[count]+"("+i+")");
            }else {
                System.out.println("N");
            }
            count++;
        }
        System.out.println();
    }


}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

谁偷了我的月亮

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值