- 博客(14)
- 收藏
- 关注
原创 基于脑电图的注意力稀疏图卷积神经网络的帕金森病识别
未能检测EEG通道之间的功能连接和相关脑区的响应,导致诊断精度不理想。用于诊断帕金森的注意力稀疏图卷积神经网络( ASGCNN )。模型使用图结构表示通道关系,选择通道的注意力机制,以及捕捉通道稀疏性的L1范数。帕金森听觉oddball范式数据集(24个PD患者(在ON / OFF药物状态下)和24个匹配的对照)。与公开的基线相比,所提出的方法提供了更好的结果。
2024-01-27 21:15:04 808 2
原创 PDCNet:一个利用脑电信号检测帕金森病的自动框架
平滑伪Wigner - Ville分布( SPWVD )与卷积神经网络( CNN )耦合的自动PD检测。首先对EEG信号进行SPWVD得到时频表示( TFR )。然后将这些二维图输入到CNN中。所提出的模型使用两个公共数据集开发。我们在数据集1和2中分别获得了100 %和99.97 %的PD自动检测准确率。
2024-01-27 21:14:07 631 1
原创 运动想象脑电分类的脑通道-时间-频谱-注意相关
基于小波的时间-频谱-注意力相关系数( WTS-CC ),以同时考虑空间域、脑电通道域、时间域和频谱域的特征及其权重。初始时序特征提取( i TFE )模块提取MI脑电信号的初始重要时许特征;提出深度脑电-通道注意力( Deep EEG-Channel Attention,DEC )模块,根据每个脑电通道的重要性自动调整其权重,从而有效增强更重要的脑电通道,抑制更不重要的脑电通道。
2024-01-23 20:24:24 892
原创 加权迁移学习用于改进基于运动想象的脑-机接口
会话/被试间脑信号特性存在差异,校准时间较长,需要大量训练数据分类域迁移学习(当只有少数特定受试者的试验可用于训练时,通过结合其他用户先前记录的数据来改善分类参数的估计。在分类器的目标函数中加入正则化参数,使得分类参数尽可能地接近与目标主体特征空间相似的先前用户的分类参数。在不牺牲分类精度的情况下,减少校准时间与特定受试者分类器相比,所提出的加权迁移学习分类器提高了分类结果,特别是当用于训练的特定受试者试验较少时。
2024-01-23 19:14:39 1310
原创 一种基于亮度和运动同步调制的新型SSVEP脑机接口系统
以往基于SSVEP的BCI大多采用静止的视觉闪烁,只有少数研究探讨了运动的视觉闪烁对SSVEP - BCI的影响。基于亮度和运动同时调制的新型刺激编码方法。采用采样的正弦刺激方法对刺激目标的频率和相位进行编码。视觉闪烁以不同频率(即0、0.2、0.4和0.6 Hz)沿正弦函数水平向左右移动。在此基础上,搭建了九目标SSVEP - BCI系统,研究了运动调制对SSVEP - BCI系统性能的影响。采用滤波器组典型相关分析( FBCCA )方法识别刺激靶点。17名受试者的离线实验。
2024-01-22 11:02:15 800
原创 脑电整合器:用于脑电解码和可视化的卷积转换器
EEG Conformer ,将局部和全局特征封装在一个统一的EEG分类框架中。卷积模块在整个一维时间和空间卷积层中学习低级的局部特征;自注意力模块直接连接,以提取局部时间特征内的全局相关性;基于全连接层的简单分类器模块被用于预测EEG信号的类别在基于EEG的运动想象和情绪识别范式的三个公开数据集上进行了广泛的实验达到了最先进的性能,有很大的潜力成为通用EEG解码的新基线。
2024-01-19 11:27:07 1290 3
原创 基于EEG的运动想象识别的深度时间网络
基于Transformer的深度学习神经网络架构BCI竞赛III IVa和IV 2a原始数据集本文提出的方法比现有的先进方法具有更优越的性能。在二分类和多分类数据集上的分类准确率分别为99.7 %和84 %。本文提出的方法处理了BCI竞赛III IVa和BCI IV 2a的数据集。在这里,信号通过一个transformer编码器,其中使用了七层卷积层。多头注意力由于支持数据的并行计算,减少了系统的计算时间。由于多头注意力,它提供了更好的准确性。残差总是被转发到下一层,这也有助于提高系统的精度。
2023-12-11 21:31:24 429 1
原创 一种基于VR和肌电实时反馈的脑卒中后运动想象训练系统
目标:开发一个基于虚拟现实( VR )的MI训练系统,结合基于肌电图( EMG )的实时反馈进行卒中后康复,VR系统的沉浸式场景为双侧上肢提供投篮训练。过程:通过采集EEG信号,对alpha和beta频段的脑活动进行映射,实现相关性分析;采集EMG数据,使用均方根算法计算阈值,用于反馈虚拟环境下投篮训练的表现得分。为探讨可行性,对不同康复阶段的脑卒中患者进行了4个实验:初始评估实验、运动想象实验( MI )、动作观察实验( AO )、运动想象与动作观察联合实验( MI + AO )。
2023-11-26 13:58:40 1619 1
原创 Attensleep:一种基于注意力的单通道EEG睡眠分期深度学习方法
AttenSleep 基于注意力的深度学习架构从单通道EEG信号中进行睡眠阶段分类从基于多分辨率卷积神经网络( MRCNN )和自适应特征重标定( AFR )的特征提取模块入手。MRCNN可以提取低频和高频特征,而AFR可以通过建模特征之间的相互依赖关系来提高提取特征的质量。第二个模块是时间上下文编码器( TCE ),它利用多头注意力机制来捕获提取特征之间的时间依赖关系。特别地,多头注意力利用因果卷积对输入特征中的时间关系进行建模。使用三个公共数据集来评估提出的AttnSleep模型的性能。
2023-11-10 21:13:30 1841 1
原创 EEG-Inception: 一种用于辅助脑-机接口的新型深度卷积神经网络
用EEG-Inception 结合跨被试转移学习、微调fine-tuning,改善EEG识别的精确率和校准时间
2023-07-18 17:38:16 379 1
原创 基于AT89C51及Proteus仿真的室内火灾监测装置
AT89C51、LCD1602、ADC0808温湿度监测、8255A扩展;监测设置点温度、烟雾参数并显示;手动设置阈值;声光报警
2022-11-23 20:56:54 1016 1
原创 基于AT89C51的多音乐播放器Proteus仿真实验
AT89C51、LCD1602、矩阵按键、数码管; 开机后顺序播放曲目,曲目序号数码管显示;设置单曲循环按键,按下时单曲循环,释放时接续顺序播放;节拍时间实现方式,下发任务时分别指定基于定时器或软件延时实现;设计选歌,暂停功能。电路工作时任意时刻,都可进入选歌状态(外部中断控制),指示灯阵列显示同步响应;电子琴按键及显示,通过按钮或开工选择进入电子琴模式,按下矩阵键盘按键,数字键1到7,产生低音1到7。同时数码管显示当前音符;
2022-11-23 19:32:05 2720
基于AT89C51及Proteus仿真平台的室内火灾报警控制
2022-11-23
单片机AT89C51的Proteus仿真 多功能音乐播放器实验
2022-11-22
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人