EEG-Inception: 一种用于辅助脑-机接口的新型深度卷积神经网络

文献来源

IEEE TRANSACTION ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL,28, NO.12, DECEMBER 2020
Eduardo Santamaría-Vázquez , Víctor Martínez-Cagigal , Fernando Vaquerizo-Villar , and Roberto Hornero , SeniorMember,IEEE

摘要

方法:EEG-Inception 结合跨被试转移学习、微调fine-tuning
目的:改善精确率和校准时间
效果:rLDA、xDAWN+黎曼几何、CNN-BLSTM、DeepConvNet和EEGNet,分别实现提高了16.0%, 10.7%, 7.2%, 5.7% 和5.1% 的解码性能

引言

Inception模块:允许并行使用不同内核大小的卷积层,对输入数据进行多尺度分析。能够以较小的计算量提取出更丰富的特征,在保持合理的训练和评估时间的前提下提高性能。

被试

73个被试,来自3个数据集。其中,42健康(年龄25.4±4.3,31男),31重度残疾(年龄44.2±7.7,20男)
73个被试分为三部分:训练training、验证validation、测试test。健康被试分为两组:训练80%、验证20%。31个运动障碍为测试。
基于ERP的矩阵拼写器(row-column paradigm RCP)范式
数据集
脑电数据采集:采样率256 Hz,导联数8(Fz, Cz, Pz, P3, P4, PO7, PO8 and Oz),FPz作为地,耳垂为参考电极,导联位置按照国际10-20标准。
信号预处理:降采样到128 Hz;采用通带为0.5-45 Hz的带通滤波器;重参考,使用共平均参考;对数据进行切分,从刺激开始时刻到之后的1000 ms为止。
输入模型的EEG为大小 128×8(时间×空间OR采样点×通道、导联)的数组。

方法

EEG-Inception网络结构上包含了2个Inception模块、1个output模块(2个卷积层、最后全连接层分类)。
Inception module 1: 卷积核C1、2、3对信号进行3种时间维度的特征提取,输入采样率128Hz,每个卷积对应500、250、125ms的时间窗。D1、2、3卷积层进行导联维度的深度卷积。N1将输出拼接。A1进行平均池化降低维度。
Inception module 2: 在更高的特征抽象层次提取所有导联的时序特征。卷积核C4、5、6对应500、250、125ms的时间窗。N2拼接输出,A2平均池化降低维度。
Output module: 将信息压缩为少数的几个特征。卷积层C7、8用于提取特征中对分类有用的模型,A3、4平均池化降低维度,最后全连接+softmax分类(目标、非目标)输出(估计每个类别的概率)。(滤波器数量递减,和平均池化层一起降维,避免过拟合)
模型训练配置:Adam optimizer with default hyperparameters β1 = 0.9and β2 = 0.999 [38]; categorical cross entropy loss function [39]; mini-batch size of 1024; and 500 epochs.
在这里插入图片描述
在这里插入图片描述

实验结果

先在验证集上进行EEG-Inception的超参数优化,用训练集完成模型训练。
然后测试,被试随机抽取N个trial的脑电数据,对模型进行fine-tuning,再测试被试剩余的数据上进行测试获得最后的精度。

微调fine-tuning过程:从每个被试中随机选N个trial;训练的模型与这些数据进行微调,获得该被试的特定模型;微调模型与每个被试的其余实验一起测试,对每个N和被试重复100次,平均结果。N是微调次数
在这里插入图片描述

结果

测试集指令解码精度

模型是使用单个刺激对应的观测值(即EEG epoch)进行训练和测试的。
命令解码过程遵循单刺激方法:预测单个epoch的概率,然后对每行和每列进行平均。然后选择概率较大的行和列对应的命令。
模型的输入为刺激引发的脑电样本(128×8,文中称observation, eeg epoch),但是对于矩阵拼写器,经过一轮行列的闪烁才能确定想要拼写的字符。
表中的指令解码精度为不同fine-tuning数量(n)情况下,使用No.Sequences轮的数据,实现拼写字符判断的正确率。
在这里插入图片描述

信息传输速率

N越大 IRT越大
在这里插入图片描述

参考

https://zhuanlan.zhihu.com/p/486009520

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
### 回答1: mi-bci是一种通过大信号实现人交互的技术,它能够识别并分类人中的特定动作意图。运动想象分类就是将mi-bci应用于分类运动想象任务。下面是使用MATLAB编写的运动想象分类CNN-SAE程序。 首先,我们需要导入所需的MATLAB包和库。我们使用MATLAB的Deep Learning Toolbox功能来构建卷积神经网络(CNN)和稀疏自编码器(SAE)模型。导入数据集和标签集,包括训练集和测试集。 然后,我们需要对数据进行预处理。首先,我们将数据分为训练集和测试集,并将其归一化到0到1的范围内。接下来,我们将数据转换为适合卷积神经网络的形状。 创建CNN模型。我们使用卷积层、池化层和全连接层来构建CNN模型。对于卷积层,我们选择适当的卷积核大小和步幅来提取关键特征。池化层用于减小特征图的大小,并保持特征的一些不变性。全连接层用于分类任务。 进行训练和优化。我们使用训练集来训练CNN模型,并通过反向传播算法更新模型的权重和偏差。我们使用交叉熵损失函数和随梯度下降算法来优化模型。 创建SAE模型。在CNN模型之后,我们使用稀疏自编码器来进一步提取特征。稀疏自编码器是一种无监督学习算法,它可以通过最小化重构误差来学习数据的低维表示。 最后,我们使用测试集来评估模型的性能。我们将模型的输出与真实标签进行比较,并计算分类准确率、精确度、召回率等指标。 总结而言,这是一个用于mi-bci分类的CNN-SAE程序。它通过训练卷积神经网络和稀疏自编码器来实现对运动想象任务的分类。通过该程序,我们可以有效地识别和分类运动想象任务,为mi-bci技术的应用提供了一种可行的方法。 ### 回答2: mi-bci是一种通过监测大运动想象来实现的接口技术。在此问题中,我们需要用Matlab编写一个用于mi-bci分类的CNN-SAE(卷积神经网络稀疏自编码器)程序。 首先,我们需要导入所需的Matlab库和数据集。可以使用MATLAB中的`import`命令来导入相应的库函数和数据。 接下来,我们需要准备数据集。mi-bci数据集通常包含一系列带有分类标签的EEG电图)数据,每个数据样本对应于被试者在不同想象动作下的大活动。我们需要将数据集划分为训练集和测试集,用于训练和评估CNN-SAE模型的性能。 然后,我们构建CNN-SAE模型。这个模型由多个卷积层、池化层和全连接层组成。每个层都有相应的参数,如滤波器大小、步长等。通过逐层设置这些参数,我们可以构建一个适合mi-bci分类任务的模型。 接下来,我们需要在训练集上训练CNN-SAE模型。训练过程通常包括多次迭代,每次迭代都会调整模型的权重和偏置,以最小化损失函数。使用训练数据,我们可以逐渐提高模型的准确性。 最后,我们可以使用测试集来评估模型的性能。将测试数据输入已经训练好的模型中,通过比较预测结果和真实标签,我们可以得到模型的准确率、精确度、召回率等性能指标。 在编写这个程序时,我们需要合理设置超参数,如学习率、迭代次数、卷积核个数等。这些超参数的选择会影响模型的性能和收敛速度。 综上所述,编写一个用于mi-bci分类的CNN-SAE程序,需要导入库函数和数据集、准备数据、构建模型、训练模型,并评估模型的性能。这只是一个大致的步骤,具体实现过程需要根据具体的mi-bci分类任务和数据集来确定。 ### 回答3: 运动想象分类是一种基于接口技术的运动想象实验,通过分析被试者的大活动模式,将不同的运动想象分类成具体的动作类别。为了实现这个目标,可以使用一种叫做深度学习器学习方法中的卷积神经网络(CNN)。 MATLAB是一种常用的科学计算软件,也提供了深度学习工具箱,方便我们编写和运行深度学习的代码。以下是一种用于运动想象分类的CNN-SAE(卷积神经网络-稀疏自编码器)的MATLAB代码: 1. 数据预处理: - 读取运动想象实验的电信号数据和相应的标签数据,其中标签表示被试者想象的运动类型。 - 对电信号数据进行预处理,如滤波去噪、时域/频域特征提取等。 2. 数据划分: - 将电信号数据划分成训练集、验证集和测试集,一般采用交叉验证的方法。 3. 构建CNN网络: - 设计CNN网络的结构,包括卷积层、池化层、全连接层等。 - 设置相应的参数,如卷积核大小、卷积步长、池化窗口大小等。 4. 特征学习: - 使用训练集的数据和标签进行网络训练,使网络学习到适合运动想象分类的特征表示。 - 采用稀疏自编码器(SAE)作为中间层,增强特征表示的能力。 5. 分类: - 使用训练好的CNN-SAE模型对测试集进行分类。 - 计算分类精度和其他评价指标。 通过以上步骤,就可以使用MATLAB编写出运动想象分类的CNN-SAE程序。这个程序可以用于训练和分类运动想象实验的电信号数据,帮助我们分析和理解大活动模式,并实现准确的运动想象分类。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值