首先明确这三者是等价的。
接下来我们得先明确概念的定义:
①方阵可逆:即方阵存在逆阵,使:AA^-1=E;
②矩阵行列式:即由矩阵的全部元素构成的行列式;
③方阵的秩:等于方阵n个列向量所构成的向量组的秩;满秩即秩=n;
④向量组的秩:向量组的最大无关组所含向量的个数;
⑤向量组的最大无关组:若一个向量组中的部分向量组α1,α2,…,αm满足:1)α1,α2,…,αm线性无关;2)向量组中任一向量都是α1,α2,…,αm的线性组合。则称α1,α2,…,αm是该向量组的最大无关组;
⑥向量组的线性相关性:设有n维向量组α1,α2,…,αm,如果存在不全为零的数k1,k2,…,km,使得k1α1+k2α2+…+kmαm=0成立,则称向量组α1,α2,…,αm线性相关;如果上式仅当k1=k2=…=km=0时才成立,则称向量组α1,α2,…,αm线性组关。
然后即是三者关系推导:
1)由方阵可逆→方阵行列式≠0:
∵A可逆,即AA^-1=E
∴ |A||A^-1|=E
∴|A|≠0.
2)方阵行列式≠0→方阵满秩
方阵行列式≠0→上三角行列式≠0→上三角行列式对角线上的数不为0→n个列向量所构成的向量组线性无关→方阵满秩.
3)方阵满秩→方阵行列式≠0
方阵满秩→n个列向量所构成的向量组线性无关→上三角行列式对角线上的数不为0→上三角行列式≠0→方阵行列式≠0
4)方阵行列式≠0→方阵可逆
先定义伴随矩阵:
AA*=|A|E→A(A*/|A|)=E→A^-1=A*/|A|
由以上四个推导便可证明方阵可逆,方阵行列式≠0,方阵满秩三者是等价的。
参考文献
线性代数/刘二根,谢霖铨主编. —南昌:江西高校出版社,2015.7(2016.7重印)
图片引自https://pic1.zhimg.com/v2fb904f7b91615106f1fe3b992cc4c7d4_r.jpg
方阵可逆,方阵行列式≠0,方阵满秩三者关系推导
最新推荐文章于 2025-03-16 19:07:33 发布