pandas中的merge操作

1.导入pandas

import pandas as pd

2.定义DataFrame

left = pd.DataFrame({'key':['K0','K1','K2','K3'],
                    'A':['A0','A1','A2','A3'],
                    'B':['B0','B1','B2','B3']})

right = pd.DataFrame({'key':['K0','K1','K2','K3'],
                    'C':['C0','C1','C2','C3'],
                    'D':['D0','D1','D2','D3']})
left
right

3.介绍merge()方法的用法

pd.merge(left,right)

pd.merge(left,right,on='key')

left = pd.DataFrame({'key1':['K0','K1','K2','K3'],
                     'key2':['K0','K1','K2','K3'],
                    'A':['A0','A1','A2','A3'],
                    'B':['B0','B1','B2','B3']})

right = pd.DataFrame({'key1':['K0','K1','K2','K3'],
                      'key2':['K0','K1','K2','K4'],
                    'C':['C0','C1','C2','C3'],
                    'D':['D0','D1','D2','D3']})
left
right

合并融合key1

pd.merge(left,right,on='key1')

合并融合key1和key2

pd.merge(left,right,on=['key1','key2'])

因为两个DataFrame中的key2特征值不同,merge之后直接把第三行都舍去,取交集

取并集

pd.merge(left,right,on=['key1','key2'],how='outer')

增加指示器

pd.merge(left,right,on=['key1','key2'],how='outer',indicator = True)

以某一个DataFrame为标准与另外一个DataFrame进行merge,舍去第二个DataFrame中与第一个DataFrame不同的行中的内容

pd.merge(left,right,on=['key1','key2'],how='left')
pd.merge(left,right,on=['key1','key2'],how='right')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小徐的记事本

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值