##10 卷积神经网络(CNN):深度学习的视觉之眼


前言

在深度学习的领域中,卷积神经网络(CNN)已经成为视觉识别任务的核心技术。自从AlexNet在2012年ImageNet竞赛中取得突破性成绩以来,CNN不断推动着计算机视觉的边界。本文将深入介绍CNN的基本概念,结构以及在图像处理中的应用。
在这里插入图片描述

1. CNN的诞生与发展

在人工神经网络(ANN)的研究中,研究人员发现对于图像这种高维数据,传统的全连接网络效果并不理想,参数众多,容易导致过拟合。1980年,Fukushima提出了神经认知机的概念,这可以视为CNN的前身。1998年,LeCun等人提出了LeNet-5模型,这是第一个成功应用于数字识别的卷积神经网络,开启了CNN的新纪元。

2. CNN的核心概念

CNN通过模拟生物视觉机制来进行图像识别。它由多个卷积层、池化层和全连接层组成。下面将详细介绍每一部分:

  • 卷积层:使用一系列的卷积核(或滤波器)在输入图像上滑动,通过计算卷积核与图像的点积来提取特征。卷积操作保持了图像的空间关系,并且通过参数共享减少了模型的复杂度。

  • 激活函数:在每次卷积之后通常会使用一个非线性激活函数,如ReLU,增加网络的非线性,使网络有能力学习更复杂的特征。

  • 池化层:也称作下采样层,池化层会减少数据的空间大小,从而降低计算量。最常用的池化操作包括最大池化和平均池化。

  • 全连接层:在多个卷积和池化层之后,全连接层的作用是将学习到的“分布式特征表示”映射到样本标记空间。

3. 在PyTorch中构建CNN

PyTorch提供了一个简洁且强大的框架来构建和训练CNN。以下是构建一个简单CNN的基本步骤:

import torch
import torch.nn as nn
import torch.nn.functional as F

# 定义CNN网络结构
class SimpleCNN(nn.Module):
    def __init__(self):
        super(SimpleCNN, self).__init__()
        self.conv1 = nn.Conv2d(
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值