【概率论-01】:事件之间关系以及概率定义

1.随机试验与随机事件

自然界与社会生活中的两类现象:

  • 确定性现象
  • 不确定现象

1.1 随机试验

如果试验满足以下三个特点:

  1. 重复性:相同条件下,试验可以重复进行
  2. 明确性:饰演的所有可能结果事先都是已知的
  3. 随机性:每次试验的具体结果,在试验前无法预知,就称此试验为随机试验,通常用 E E E表示。

比如:

  • 抛一枚硬币,观察其出现正面和反面的情况

1.2 样本点、样本空间与随机事件

样本点:随机试验中每种可能出现的情况, ω \omega ω表示样本点 。

样本空间:随机试验所有可能出现的结果组成的集合,用 Ω \Omega Ω表示。

1.3 随机事件

随机事件:样本点组成的集合,称为事件。

  • 随机事件是样本空间 Ω \Omega Ω的子集

基本事件:由一个样本点组成的事件,称为基本事件。

例:抛出两枚骰子可能出现的情况有36种

  • 两个骰子均为1点的情况,一个样本点组成,基本事件
  • 两个骰子点数之和为3的情况,(1,2)和(2,1)两种情况,是一个随机事件

1.4 随机事件发生

一个随机事件A,A事件种包含了一些样本点,在进行随机试验KaTeX parse error: Undefined control sequence: \E at position 1: \̲E̲的时候,如果随机试验中的样本点落在了A中,就表示事件A发生了,否则就称A没有发生。

在这里插入图片描述

1.5 必然事件和不可能事件

必然事件:样本点组成的集合是样本空间。
不可能事件:样本点组成的集合是空集

2 事件间的关系及运算

2.1 事件包含

如果事件A发生,一定导致事件B发生,就称为事件A包含于B,记作 A ⊂ B A\subset B AB
在这里插入图片描述

  • ⊘ ⊂ A ⊂ B \oslash \subset A \subset B AB
  • 事件A发生,当前仅当样本样本点落在A中

2.2 事件相等

事件A和事件B相互包含

2.3 事件的并

事件A和事件B至少有一个发生,记作 A ∪ B A\cup B AB或者 A + B A+B A+B
在这里插入图片描述

2.4 事件的交

事件A和事件B同时发生,记作 A ∩ B A\cap B AB A B AB AB
在这里插入图片描述

  • A B ⊂ A ⊂ A ∪ B AB\subset A \subset A \cup B ABAAB
  • A B ⊂ B ⊂ A ∪ B AB\subset B\subset A \cup B ABBAB

2.5 事件的差

一个事件在事件A中不在事件B中,A发生B不发生称为A事件与B事件的差事件
在这里插入图片描述

2.6 事件互斥(不相容)

事件A和事件B没有交集, A B = ⊘ AB = \oslash AB=,从事件的角度来讲,AB不可能同时发生。
在这里插入图片描述

2.7 事件对立(逆事件)

事件A和事件B没有交集,并且事件A的样本点+事件B的样本点为样本空间。

  • A B = ⊘ AB = \oslash AB= and A + B = Ω A + B = \Omega A+B=Ω
    在这里插入图片描述
  • 对立一定互斥,互斥不一定对立

例:事件A和事件B恰有一个发生

  • A ∪ B A \cup B AB 表示AB至少有一个发生,也表示事件A和事件B恰好有一个发生或恰好有两个发生
    在这里插入图片描述

2.8 事件运算律

在这里插入图片描述
事件表示:

  • A、B、C至少发生一个: A ∪ B ∪ C A\cup B \cup C ABC
  • A、B、C同时发生:ABC
  • A、B、C恰好一个发生:AB’C’ + A’BC‘+A’B’C

3 概率定义

3.1 概率的统计定义

将随机事件E重复进行n次,如果事件A发生了k次,就称为k为事件A发生的频数,k/A为事件A发生的频率。如果当试验次数n越来越大时,k/n总在某一定值p的附近做微小的、稳定的波动,且当n趋向于无穷大的时候,k/n无线趋向于p,就称p为事件A的概率,记为P(A),P(A) = p。

  • 频率稳定在概率附近
  • 使用此定义是求不出概率的
    在这里插入图片描述

3.2 概率的公理化定义

设随机试验E的样本空间为Ω,如果p满足:

  • 非负性,P(A)>=0
  • 规范性,P(Ω)=1
  • 可列可加性,两两不相同的事件, P ( A 1 ∪ A 2 ∪ . . . ∪ A n ∪ . . . ) P(A_1 \cup A_2 \cup ...\cup A_n \cup ...) P(A1A2...An...) = P ( A 1 ) + P ( A 2 ) + . . . . . P(A_1) + P(A_2) + ..... P(A1)+P(A2)+.....

就称P(A)为事件A的概率

性质:

  • 非负性:设A为任一随机事件,概率在[0,1]
  • 规范性:P(Ω) = 1
  • 有限可加性
  • 差事件的概率公式(减法公式):设A、B为任意两个随机事件: P ( A − B ) = P ( A ) − P ( A B ) P(A-B) = P(A) - P(AB) P(AB)=P(A)P(AB)
    • 如果 B ⊂ A B\subset A BA,则有 P ( A − B ) = P ( A ) − P ( B ) P(A-B) = P(A)-P(B) P(AB)=P(A)P(B),且 P ( B ) ≤ P ( A ) P(B) \le P(A) P(B)P(A)
  • 对立事件概率计算公式:设A为任意随机事件,则 P ( A ‾ ) = 1 − P ( A ) P(\overline{A}) = 1 - P(A) P(A)=1P(A),涉及到至少和最多的概率,可以用这个公式进行转化。
  • 并事件概率公式(加法公式):设A、B为任意两个随机事件: P ( A ∪ B ) = P ( A ) + P ( B ) − P ( A B ) P(A \cup B) = P(A) + P(B)- P(AB) P(AB)=P(A)+P(B)P(AB)
    • A,B如果互斥: P ( A ∪ B ) = P ( A ) + P ( B ) P(A \cup B) = P(A) + P(B) P(AB)=P(A)+P(B)
    • 推广: P ( A ∪ B ∪ C ) = P ( A ) + P ( B ) + P ( C ) − P ( A B ) − P ( A C ) − P ( B C ) + P ( A B C ) P(A \cup B \cup C) = P(A) +P(B)+P(C)-P(AB)-P(AC)-P(BC)+P(ABC) P(ABC)=P(A)+P(B)+P(C)P(AB)P(AC)P(BC)+P(ABC)

在这里插入图片描述

4 古典概型

4.1 古典概型

如果随机试验E满足:

  • 随机试验E的样本空间Ω中只有有限个样本点
  • 每次试验各个基本事件出现的概率相等

就称随机事件E为等可能概型试验或者古典概型试验。

P ( A ) = 事件 A 所含样本点的个数 所有样本点的个数 P(A) = \frac {事件A所含样本点的个数}{所有样本点的个数} P(A)=所有样本点的个数事件A所含样本点的个数

  • 古典概型中的计算方式主要是计数,所以通常采用排列组合的方式
    在这里插入图片描述

上述案例中,盒子多球少,每个盒子至多有一个球,n个球需要放到n个盒子中。

4.2 几何概型

如果随机试验E的样本空间为某几何区域(可以是一维或二维区域),每次随机试验中各基本事件出现的概率相等,就称随机试验E为几何概型试验。

P ( A ) = A 的几何测度 Ω 的几何测度 P(A) = \frac {A的几何测度}{\Omega的几何测度} P(A)=Ω的几何测度A的几何测度

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值