计算机视觉
文章平均质量分 96
是Dream呀
CSDN、稀土掘金人工智能签约作者,985人工智能硕士、CSDN专家博主&人工智能领域优质创作者。一万次悲伤依然会有Dream,我一直在最温暖的地方等你!
精通撰文推广有任何需求我都可以帮助到您— —学习交流|商务合作|粉丝福利:https://bbs.csdn.net/topics/614347534
vx:18300396393
展开
-
残差网络ResNet的深入介绍和实战
ResNet是由Kaiming He等人在2015年提出的深度学习模型,它通过引入残差学习解决了随着网络深度增加而性能下降的问题。ResNet在多个视觉识别任务上取得了显著的成功,在ImageNet的分类比赛上将网络深度直接提高到了152层,前一年夺冠的VGG只有19层。斩获当年ImageNet竞赛中分类任务第一名,目标检测第一名。获得COCO数据集中目标检测第一名,图像分割第一名,可以说ResNet的出现对深度神经网络来说具有重大的历史意义。原创 2024-10-29 21:21:50 · 14533 阅读 · 0 评论 -
ShuffleNet通道混合轻量级网络的深入介绍和实战
ShuffleNet是一种轻量级的深度学习模型,它在保持MobileNet的Depthwise Separable Convolution(深度可分离卷积)的基础上,引入了通道混合(Channel Shuffle)机制,以进一步提升模型的性能和效率。原创 2024-10-17 22:15:21 · 24580 阅读 · 14 评论 -
UCI-HAR数据集深度剖析:训练仿真与可视化解读
UCI-HAR数据集是一个公开的数据集,旨在通过智能手机传感器数据进行人类活动识别。这个数据集由30名志愿者在进行日常生活活动时携带带有嵌入式惯性传感器的腰部智能手机生成。数据集中的活动包括行走、上楼梯、下楼梯、坐着、站立和躺着等六种基本活动。UCI-HAR数据集提供了原始的采样数据和经过预处理的数据。原始数据包括加速度计和陀螺仪的三轴数据,而预处理后的数据则包括时域和频域的特征向量。数据集中的每个样本都包含了丰富的特征信息,如加速度和角速度数据,以及从这些数据中提取的561种特征向量。Walking。原创 2024-10-12 14:09:17 · 28995 阅读 · 14 评论 -
基于四种网络结构的WISDM数据集仿真及对比:Resnet、LSTM、Shufflenet及CNN
残差网络是一种深度学习模型,通过引入“残差学习”的概念来解决深度神经网络训练困难的问题。ResNet沿用了VGG完整的3 × 3卷积层设计。残差块里首先有2个有相同输出通道数的3 × 3卷积层。每个卷积层后接一个批量规范化层和ReLU激活函数。然后我们通过跨层数据通路,跳过这2个卷积运算,将输入直接加在最后的ReLU激活函数前。残差块(Residual Block):输入通过一个或多个卷积层后,与输入相加,形成残差。原创 2024-10-03 18:38:18 · 33945 阅读 · 25 评论 -
CNN网络训练WISDM数据集:模型仿真及可视化分析
WISDM数据集是一个用于人类活动识别(Human Activity Recognition, HAR)的公共数据集。数据集来源与构成WISDM数据集由福特汉姆大学计算机与信息科学系的Gary Weiss博士领导的团队创建。数据集包含了51名参与者进行的18种不同的活动,每种活动的数据都是通过佩戴在身体不同部位的智能手机和智能手表上的加速度计和陀螺仪以20Hz的频率收集得到的。数据集特点数据集中的活动包括但不限于走路、跑步、上下楼梯、坐、站等。原创 2024-09-25 12:42:49 · 39859 阅读 · 19 评论 -
YOLOv5姿态估计实战与介绍
本文主要是用于工程应用,没有涉及算法训练。Hrnet或是simdr都是先目标检测后姿态估计,yolov5就是获得人体边界框的。全文较长,主要都是些代码,在最后也给大家展示了照片、视频、摄像头的展示代码,同时也分享了自己的报错,还是一次非常有意义有收获的实践!同时因为本文采用的cpu,大家也可以用gpu去跑得到更高效的结果。过后我也会在此代码的基础上,训练新的模型进行动作识别,如果有新的进展会及时分享给大家,欢迎大家一起操作起来,实践出真知!围白的尾巴大佬提供的代码和思路,本文也是在此基础上的完善和实践。原创 2024-11-18 21:20:31 · 1277 阅读 · 4 评论 -
CIFAR-10数据集详析:使用卷积神经网络训练图像分类模型
CIFAR-10 数据集由 10 个类的彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为5个训练批次和1个测试批次,每个批次有10000张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次正好包含来自每个类的 5000 张图像。32×32 RGB图像 ,数据集本身是 BGR 通道。原创 2024-02-06 14:42:01 · 4392 阅读 · 7 评论 -
CIFAR-10数据集详析:使用卷积神经网络训练图像分类模型
CIFAR-10 数据集由 10 个类的彩色图像组成,每类6000张图像。有50000张训练图像和10000张测试图像。数据集分为5个训练批次和1个测试批次,每个批次有10000张图像。测试批次正好包含从每个类中随机选择的 1000 张图像。训练批次以随机顺序包含剩余的图像,但某些训练批次可能包含来自一个类的图像多于另一个类的图像。在它们之间,训练批次正好包含来自每个类的 5000 张图像。32×32 RGB图像 ,数据集本身是 BGR 通道。原创 2024-01-27 23:51:49 · 4691 阅读 · 38 评论 -
OpenCV实战:控制手势实现无触摸拖拽功能
Hello大家好,我是Dream。 今天来学习一下如何使用OpenCV来控制手势,瞬间提升操作体验!跨越界限,OpenCV手势控制拖拽功能现身。原创 2024-02-06 14:41:56 · 2869 阅读 · 5 评论 -
YOLOv5姿态估计:HRnet实时检测人体关键点
利用YOLOv5进行姿态估计,HRnet与SimDR检测图片、视频以及摄像头中的人体关键点。本文主要是用于工程应用,没有涉及算法训练。Hrnet或是simdr都是先目标检测后姿态估计,yolov5就是获得人体边界框的。全文较长,主要都是些代码,在最后也给大家展示了照片、视频、摄像头的展示代码,同时也分享了自己的报错,还是一次非常有意义有收获的实践!原创 2024-01-16 11:34:12 · 6876 阅读 · 87 评论 -
神经网络:图像处理基础
低频信息(低频分量):表示图像中灰度值变化缓慢的区域,对应着图像中大块平坦的区域。高频信息(高频分量):表示图像中灰度值变化剧烈的区域,对应着图像的边缘(轮廓)、噪声(之所以说噪声也是高频分量,是因为图像噪声在大部分情况下都是高频的)以及细节部分。低频分量主要对整幅图像强度的综合度量。高频分量主要对图像边缘和轮廓的度量(人眼对高频分量比较敏感)。傅立叶变换角度理解:从傅立叶变换的角度,我们可以将图像从灰度分布转化为频率分布。图像进行傅立叶变换之后得到的频谱图,就是图像梯度的分布图。原创 2023-12-27 15:56:33 · 3283 阅读 · 2 评论 -
计算机视觉实战--直方图均衡化和自适应直方图均衡化
Hello大家好,我是Dream。 均衡化是数字图像处理中常用的一种技术,用于增强图像的视觉效果和对比度。,今天我们将实现对同一张图像的直方图均衡化和自适应直方图均衡化处理,学习一下两者的的基本原理和实现过程,一起来看看吧~原创 2023-08-08 23:46:09 · 6983 阅读 · 124 评论 -
计算机视觉--利用HSV和YIQ颜色空间处理图像噪声
Hello大家好,我是Dream。 今天我们将利用HSV和YIQ颜色空间处理图像噪声。在本次实验中,我们使用任意一张图片,通过RGB转HSV和YIQ的操作,加入了椒盐噪声并将其转换回RGB格式,最终实现对图像的噪声处理。一起来看看吧~原创 2023-07-26 11:46:40 · 4498 阅读 · 136 评论 -
计算机视觉--距离变换算法的实战应用
Hello大家好,我是Dream。 计算机视觉CV是人工智能一个非常重要的领域。 在本次的距离变换任务中,我们将使用D4距离度量方法来对图像进行处理。通过这次实验,我们可以更好地理解距离度量在计算机视觉中的应用。希望大家对计算机视觉和图像处理有了更深入的了解。让我们一起来看看实际的计算结果和可视化效果吧!原创 2023-07-24 15:15:34 · 8769 阅读 · 115 评论