- 博客(64)
- 问答 (1)
- 收藏
- 关注
原创 linux系统+拨号连网+VPN(L2TP)+集群+安装虚拟机+pycharm远程连接服务器上的虚拟机 流程概述
点击"IPv4 Settings"->"route"勾选下面两个选项,禁止自动获取路由,同时限制内网访问->ok->save。需要设置与共享密钥的话点击右下角“IPSec Settings…”,输入密钥,之后点击“ok”(因为是动态ip地址,所以每连一次VPN就要重新配置一次路由)点击create,输入对应的网关(内网的网关)、用户名和密码。打开设置->网络->选择刚才建立好的VPN进行连接即可。弹出的对话框左下角点击“+”,选择L2TP。,之后输入密码即可进入集群。连接好之后打开命令行输入。
2024-07-23 13:23:00
1278
原创 调试深度学习代码过程中的一些小问题
这篇博客提供的一种解决方法是更新pytorch版本,但考虑到pytorch版本要与cuda、NIVIA DRIVER版本对应,调整起来比较麻烦且可能会导致其他更严重的问题,所以放弃这个思路。
2024-03-19 12:02:13
578
1
原创 GeForce GTX 1080 Ti服务器搭建GPU加速环境
GeForce GTX 1080 Ti + NVIDIA 驱动470.239 + CUDA11.3 + python3.10 + pytorch1.10.0 + torchvision0.12.0 +kornia0.6.8 环境搭建
2024-03-01 02:50:52
1850
1
原创 使用坚果云实现Zotero文件同步
Zotero服务器提供的免费存储空间只有300MB大小,依靠它同步全部资源远远不够。此时就需要借助坚果云来间接扩展Zotero的存储空间。
2023-05-06 17:40:00
21411
9
原创 OpenMMLab 系列框架的核心注册机制装饰器
OpenMMLab 系列框架(如 MMDetection、MMDetection3D、MMClassification 等)的核心注册机制装饰器是 @register_module(),它是实现“配置驱动开发”的基石。通过这种机制,用户可以将自定义组件(如模型、数据集、损失函数等)注册到框架中,再通过配置文件灵活调用,无需修改框架源码。
2025-11-04 11:31:24
602
原创 CroCoDL - Cross-device Collaborative Dataset for Localization baseline环境配置的问题
CroCoDL - Cross-device Collaborative Dataset for Localization比赛环境配置问题
2025-09-25 11:05:21
349
原创 图像正向扭曲反向扭曲
正向扭曲和反向扭曲是图像处理中的两种坐标映射技术,核心区别在于像素映射方向:正向扭曲从原始图像像素出发,计算目标位置并赋值,可能导致空洞和像素重叠;反向扭曲则从目标图像像素出发,逆向计算原始图像坐标并通过插值获取像素值,避免空洞且结果更平滑。正向扭曲依赖正变换规则,反向扭曲需要逆变换规则。反向扭曲因能生成无空洞、平滑的图像,且更容易获取逆变换参数,在实际应用中更为常用。
2025-09-03 18:59:36
547
原创 已经设置了model.eval(),为什么还要再设置torch.no_grad()才能使GPU减小内存占用?
虽然都用于推理模式,但它们的作用不同且互补。在 PyTorch 中,
2025-08-02 21:33:34
327
原创 cuFFT only supports dimensions whose sizes are powers of two when computing in half precision.
cuFFT 对 float16 有严格限制:仅支持尺寸为 2 的幂(如 32×32、64×64)。但在单精度(float32) 下,cuFFT 没有这个限制,支持任意尺寸(包括 33×33)的 FFT 计算。float16 + 非 2 的幂尺寸 → cuFFT 报错(限制)。float32 + 任意尺寸 → cuFFT 正常(无限制)。
2025-07-30 10:49:13
268
原创 DataParallel (DP) & DistributedDataParallel (DDP)
是将总 batch size 均分至每个 GPU 的实现方式,而。则是每个 GPU 独立设置 batch size。在 PyTorch 中,
2025-07-29 17:26:36
473
原创 Physics-guided Noise Neural Proxy for Practical Low-light Raw Image Denoising中PND噪声解耦模块原理
噪声类型ELD的解耦思路PMN的解耦思路核心优势帧级噪声多帧平均 + 简单分布假设多帧平均 + 噪声模型约束结合物理模型,提升稳定性带级噪声行/列统计 + 高斯拟合行/列统计 + 暗阴影校正(时间分解)区分稳定/变化噪声,降低复杂度像素级噪声残差提取 + 经验分布假设残差提取 + 神经代理 + 可微分布损失精准学习复杂分布,适配真实场景。
2025-06-27 09:38:10
766
原创 大模型幻觉
对于大模型出现幻觉,研究者们给出了基于信息流的解释:他们认为在生成的文本序列越来越长的同时,通常位于序列前段的 vision tokens 所提供的视觉信息会在 summary token 之间信息流动的过程中逐渐被稀释(因为一个 summary token 很难将序列中所有前文 token 所包含的信息都完整地记录)。研究者们将这一现象描述为 “partial over-trust”,并发现大模型的这种阶段性总结可能是导致幻觉问题的一大“元凶”!解决方案:惩罚-回退-再分配。
2025-05-20 21:41:44
248
原创 多头注意力机制和单注意力头多输出的区别
多头注意力得到的是一个 6×4 维的张量:我们有 6 个输入 token 和 4 个自注意力头,其中每个自注意力头返回一个 1 维输出。之前的自注意力一节也得到了一个 6×4 维的张量。增加单自注意力头的输出维度和使用多个注意力头的区别在于模型处理和学习数据的方式。尽管这两种方法都能提升模型表征数据的不同特征或不同方面的能力,但它们的方式却有根本性的差异。例如,多头注意力中的每个注意力头都可以学习关注输入序列的不同部分,捕获数据中的不同方面或关系。这种表征的多样性是多头注意力成功的关键。
2025-05-20 21:25:49
317
原创 ubuntu 20.04 ping baidu.coom可以通,ping www.baidu.com不通 【DNS出现问题】解决方案
如果以上命令的输出都正常,那么说明IPV6是没有问题的。那么问题就出在了DNS上。
2025-05-19 21:19:34
987
原创 epic_kitchens_sounds数据集中对segment标签的处理:时间维度和特征维度的转换
假设:视频参数:fps=30,segments=2.0s(第2秒), 特征参数:num_frames=16,feat_stride=8。问题:60帧更接近第6个特征点的中心(6*8 + 8 = 56),但直接映射到7.5会导致错位。第6个特征点覆盖 [48, 64) 帧,中心在 48 + 8 = 56 帧。第7个特征点覆盖 [56, 72) 帧,中心在 56 + 8 = 64 帧。60帧 距离第6个特征点中心(56帧)更近,因此 6.5 是更合理的索引。epic_kitchens数据集中。
2025-05-09 18:34:41
337
原创 python setup.py install --user和pip install -e .的区别
【代码】python setup.py install --user和pip install -e .的区别。
2025-05-06 17:21:08
405
原创 不小心把当前的环境变量路径覆盖掉怎么办
配置环境变量(~/.bashrc)的时候没加:$PATH,导致之后只剩下刚刚配置的环境变量了。连vim都打不开。
2025-05-05 19:01:39
309
原创 RAGFlow部署时遇到的mysql unhealthy问题解决方案汇总
【代码】RAGFlow部署时遇到的mysql unhealthy问题解决方案汇总。
2025-03-27 20:32:58
2117
1
原创 tensorboard报错MessageToJson() got an unexpected keyword argument
问题出在tensorboard 的 hparams 插件中,具体原因是 json_format.MessageToJson() 函数调用时传递了一个不被支持的参数 including_default_value_fields。通常是由于 protobuf 库的版本与 tensorboard 不兼容导致的。我的tensorboard是2.14.0,protobuf是5.x.x(忘记具体是多少了),后来换成了protobuf 4.25.6,问题就解决了。
2025-03-24 16:18:05
795
原创 nnUNetv2 中 force_use_labels的作用和含义
eg:你的数据集有3 个器官(肝脏、肾脏、脾脏),那么你的标签可能是:Organs (liver, kidney, spleen): [1,2,3]肝脏、肾脏、脾脏([1,2,3])
2025-03-01 10:11:30
204
原创 ImportError: cannot import name ‘GradScaler‘ from ‘torch‘
【代码】ImportError: cannot import name ‘GradScaler‘ from ‘torch‘
2025-02-26 14:47:39
970
原创 OpenCV(4.11.0) /io/opencv/modules/imgproc/src/resize.cpp:3845: error: (-215:Assertion failed) !dsize
【代码】OpenCV(4.11.0) /io/opencv/modules/imgproc/src/resize.cpp:3845: error: (-215:Assertion failed)!dsize。
2025-02-20 18:36:57
788
2
原创 torch.nn.functional.conv1d
模块,是一个函数形式的接口。的卷积操作需求,或者在自定义复杂模块中需要精细控制卷积过程参数(如步长、填充、分组等)时使用。模块中定义的一个类,代表了一维卷积层(Layer)。它便于将卷积层作为神经网络架构中的一个组件进行管理、组合以及。groups:分组卷积(按照通道维数划分)dilation:表示的是空洞卷积。它属于PyTorch的。
2024-12-07 16:30:30
1397
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人
RSS订阅