linux系统+拨号连网+VPN(L2TP)+集群+安装虚拟机+pycharm远程连接服务器上的虚拟机
- 1、[linux系统安装](https://blog.csdn.net/weixin_51397022/article/details/124520663)
- 2、插上网线,进行[拨号上网](https://blog.csdn.net/qq_42775938/article/details/121055837)
- 3、连接VPN
- 4、配置路由
- 5、进入集群
- 6、下载镜像->加载镜像(要回到镜像的下载位置进行加载)
- 7、创建虚拟机->设置网络映射(ssh:22、xrdp:3389、VNC:5901)
- 8、更新源、下载必要的安装包
- 9、配置ssh文件
- 10、下载可视化服务和界面,输入passwd设置密码
- 11、命令行远程连接服务器上的虚拟机
- 12、pycharm远程连接服务器上的虚拟机
- 13、[【Anaconda】Linux系统下Anaconda详细安装过程](https://blog.csdn.net/weixin_43858830/article/details/134310118)
- 14、[pycharm连接远程服务器中的解释器](https://blog.csdn.net/qq_45100200/article/details/130355935)
- 15、[tensorflow、cuda、cudnn](https://blog.csdn.net/qq_40305923/article/details/134380070)、jax-
1、linux系统安装
- 如果不想要双系统,只要纯净的Linux系统,安装时在第一步选择 清除磁盘并安装 即可。
- 安装时尽量选择英文版本,否则之后可能会应为中文导致路径显示乱码(亲身经历)。如果不小心选了中文也不要担心,在设置->区域与语言->选择英文,重启即可。
- 设置好以上内容后赶快换源!!!!!!换源【使用
cat /etc/issue
查看系统版本】 - 上面说的换源换的是apt的源,如果要换pip的源,参照这个pip换源
- apt install或apt upgrade报错E: Unmet dependencies. Try ‘apt --fix-broken install’ with no packages (or specify a solution).解决方法:换源
- apt get install 时报错:E: Could not get lock /var/lib/dpkg/lock - open (11: Resource temporarily unavailable)解决方案
- 在linux系统中下载了软件之后桌面没有图标,可以通过写.desktop脚本放在/usr/share/applications里来实现
2、插上网线,进行拨号上网
3、连接VPN
-
终端输入
nm-connection-editor
回车 -
-
弹出的对话框左下角点击“+”,选择L2TP
-
-
点击create,输入对应的网关(内网的网关)、用户名和密码
-
需要设置与共享密钥的话点击右下角“IPSec Settings…”,输入密钥,之后点击“ok”
-
点击"IPv4 Settings"->"route"勾选下面两个选项,禁止自动获取路由,同时限制内网访问->ok->save
-
打开设置->网络->选择刚才建立好的VPN进行连接即可。
4、配置路由
连接好之后打开命令行输入sudo route add -net 要访问的VNP内网网络 netmask 255.255.255.0 gw 登陆VPN后分配给本机的动态IP地址
(因为是动态ip地址,所以每连一次VPN就要重新配置一次路由)
5、进入集群
ssh 用户名@要访问的VPN内网IP地址
,之后输入密码即可进入集群
6、下载镜像->加载镜像(要回到镜像的下载位置进行加载)
7、创建虚拟机->设置网络映射(ssh:22、xrdp:3389、VNC:5901)
8、更新源、下载必要的安装包
9、配置ssh文件
vim /etc/ssh/sshd_config
设置PermitRootLogin为yes
/etc/init.d/ssh restart
10、下载可视化服务和界面,输入passwd设置密码
11、命令行远程连接服务器上的虚拟机
ssh 用户名@要访问的VPN的IP地址 -p 端口号
注意:启动虚拟机之后不能关闭,都则是无法远程链接上服务器的
当在SSH连接时出现Host key verification failed的原因及解决方法
12、pycharm远程连接服务器上的虚拟机
-
先把内网和VPN都连好
-
点击右下角的解释器,选择ssh,
-
-
输入对应的网关、端口号、用户名和密码(注意:这里的用户名和密码是服务器中虚拟机的用户名和密码,不是集群的),之后按照提示操作
-
最后一步需要设置本地和远程虚拟机的文件映射,如果显示乱码,说明系统采用中文语言或者文件夹存在中文字符导致无法解析,需要都换成英文的。
13、【Anaconda】Linux系统下Anaconda详细安装过程
14、pycharm连接远程服务器中的解释器
- 点击FIie->Setting
- 选择add interpreter,还是远程连接虚拟机的步骤,选择虚拟机中想要的解释器即可
- 下面出现Remote…就是连接成功了
15、tensorflow、cuda、cudnn、jax-
- 版本选择:cuda11.3、cudnn8.6、jax-lib0.4.30(调用不了GPU)、tensorflow2.11、python3.10
- tensorflow、cuda、cudnn(参考一)
- tensorflow、cuda、cudnn(参考二)
- 确定显卡信息及显卡驱动的信息
nvidia-smi
,没有这个命令的话输入sudo apt-get install ubuntu-drivers-common
- 下载cuda,验证cuda信息
nvcc -V
- 下载cudnn,验证cudnn信息
cd cudnn-linux-x86_64-8.9.4.25_cuda11-archive sudo cp include/cudnn.h /usr/local/cuda/include/ sudo cp lib/libcudnn* /usr/local/cuda/lib64/ sudo chmod a+r /usr/local/cuda/include/cudnn.h sudo chmod a+r /usr/local/cuda/lib64/libcudnn* sudo cp include/cudnn_version.h /usr/local/cuda/include/ cat /usr/local/cuda/include/cudnn_version.h | grep CUDNN_MAJOR -A 2 #验证
- 确定jax的版本并下载 ( 参考一、参考二、参考三)
- 注意:jax与cuda、cudnn版本有强相关,一个版本不对应都会导致调用GPU失败。
- 我在配置过程中遇到的其他问题:
- jax安装之后与其他包要求的numpy版本冲突
- jax版本太低时运行代码提示找不到指定的属性或函数
- 确定tensorflow的版本并下载 Tensorflow与Python、CUDA、cuDNN的版本对应表
所有调用GPU失败的原因都是cuda、cudnn、python等的版本不适配问题!!!