【无标题】

import torchviz

# 定义模型
print('定义模型')
class ConvLSTM(nn.Module):
    def __init__(self, num_classes):
        super(ConvLSTM, self).__init__()
        # 省略模型的定义代码

# 创建模型实例
net = ConvLSTM(num_classes=num_classes).to(device)
# 创建一个随机输入
example_input = torch.randn(1, 1, X_train_pca.shape[1]).to(device)
# 使用torchviz可视化模型计算图
graph = torchviz.make_dot(net(example_input), params=dict(net.named_parameters()))
# 保存计算图为图片
graph.render("model_graph", format="png")




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值