最长回文数
给你一个字符串 s
,找到 s
中最长的回文子串。
示例 1:
输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。
示例 2:
输入:s = "cbbd"
输出:"bb"
提示:
1 <= s.length <= 1000
s
仅由数字和英文字母组成
Related Topics
- 字符串
- 动态规划
暴力枚举
暴力枚举的思路很简单
示例代码
class Solution {
public String longestPalindrome(String s) {
if (s.length() < 2) {
return s;
}
// 得到字符数组
char[] chars = s.toCharArray();
// 记录开始位置
int begin = 0;
// 记录结束位置
int end = 0;
for (int i = 0; i < s.length() - 1; i++) {
for (int j = i + 1; j < s.length(); j++) {
if ((j - i + 1) > (end - begin + 1) && isValid(chars, i, j)) {
begin = i;
end = j;
}
}
}
return s.substring(begin, end + 1);
}
// 返回chars数组的[left,right]部分是否是回文的
private boolean isValid(char[] chars, int left, int right) {
while (left < right) {
if (chars[left] != chars[right]) {
return false;
}
left++;
right--;
}
return true;
}
}
中心扩散
将每"一位"作为中心向两边扩撒
每次扩散分两种情况
第一种情况是以当前那一位为中心向两边扩散
第二种情况是以当前那一位和下一位为中心向两边扩散
取这两种情况的最值max
如果max比maxLen大的话,更新begin
最后直接返回截取的字符串
示例代码
class Solution {
public String longestPalindrome(String s) {
if (s.length() < 2) {
return s;
}
int begin = 0;
int maxLen = 1;
for (int i = 0; i < s.length(); i++) {
int max = Math.max(expand(s, i, i), expand(s, i, i + 1));
if (max > maxLen) {
maxLen = max;
begin = i - (max - 1) / 2;
}
}
return s.substring(begin, maxLen + begin);
}
// 返回以s[left,right]为中心得到的最大的回文子串的长度
public int expand(String s, int left, int right) {
while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
left--;
right++;
}
// right - left + 1 - 2(头尾两个不相等)
return right - left - 1;
}
}
动态规划
对于一个子串而言,如果它是回文串,并且长度大于 2,那么将它首尾的两个字母去除之后,它仍然是个回文串。
例如对于字符串 “ababa’”,如果我们已经知道 "bab” 是回文串这层关系,那么 "ababa” 一定是回文串,这是因为它的首尾两个字母都是a
使用dp[][]
二位数组来存储这层关系
dp[i][j]
表示s[i,j]
是否是回文数
如果当前要判断的范围是dp[left][right]
,字符串长度为x
第一步先看首尾是否一致,
如果不一致,则dp[left][right]
直接为false,
如果一致,则进入下一步判断
如果当前判断的字符串长度小于3
为什么是 3 ?
如果长度为1,则本身就是字符串,形成自回文
如果长度为2,则首尾一致的情况下,可以直接判断为回文
如果长度为3,则首尾一致的情况下,也可以直接判断回文
则直接将dp[left][right]
赋值为true
反之将dp[left+1][right-1]
(即去掉首尾的时候是否为回文数)的回文结构赋值给dp[i][j]
这些结束后,当dp[left][right]
是true时,
则将当前循环长度和存储的maxLen进行比较,
如果当前循环长度较大,则将其赋值给maxLen,将left赋值给begin
示例代码
public String longestPalindrome(String s) {
int len = s.length();
if(len < 2){
return s;
}
int begin = 0;
int maxLen = 1;
char[] chars = s.toCharArray();
boolean[][] dp = new boolean[len][len];
// dp[i][j]即表示s[i..j]是否为回文数
// 对角线即为每个字符本身那就可以直接初始化为true
// 也可以不初始化这个,但是为了语义完整,最好还是加上
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
//x表示长度,从长度为2开始,因为长度为1的情况可以直接判断
for (int x = 2 ; x <= len; x++) {
//循环次数为总长度减当前循环的长度再加一
for (int left = 0; left < len - x + 1; left++) {
//x=right-left+1
int right = x + left - 1;
if(chars[left] != chars[right]){
dp[left][right] = false;
}else {
if(x < 4){
dp[left][right] = true;
}else {
dp[left][right] = dp[left+1][right-1];
}
}
if(dp[left][right] && x > maxLen){
begin = left;
maxLen = x;
}
}
}
return s.substring(begin, maxLen+begin);
}
先来看 dp
数组,假设长度是5
PS: 1 代表true,0 代表false
现在任务就是根据这一条主对角线然后推演出右上三角的数据,在推演过程中更新最大值
dp[i][j]
的状态可能要通过dp[i + 1][j - 1]
得知,所以需要按照此顺序斜着遍历
那就使用斜遍历即可,这里使用相对于对角线的偏移
public String longestPalindrome1(String s) {
int len = s.length();
char[] sArray = s.toCharArray();
int maxLen = 1;
int begin = 0;
boolean[][] dp = new boolean[len][len];
// 对角线初始化位true
for (int i = 0; i < len; i++) {
dp[i][i] = true;
}
for (int offset = 1; offset < len; offset++) {
for (int j = offset; j < len; j++) {
int i = j - offset;
System.out.println(i + " " + j);
if (sArray[i] != sArray[j]) {
dp[i][j] = false;
} else {
if (offset + 1 < 4) {
// 如果长度是2或者3,直接赋值true即可
dp[i][j] = true;
} else {
dp[i][j] = dp[i + 1][j - 1];
}
if (dp[i][j] && j - i + 1 > maxLen) {
// 更新最大值
maxLen = j - i + 1;
// 更新开始位置
begin = i;
}
}
}
}
return s.substring(begin, begin + maxLen);
}