【5-Medium】最长回文数

最长回文数

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

提示:

  • 1 <= s.length <= 1000
  • s 仅由数字和英文字母组成

Related Topics

  • 字符串
  • 动态规划

暴力枚举

暴力枚举的思路很简单

示例代码

class Solution {
    public String longestPalindrome(String s) {
        if (s.length() < 2) {
            return s;
        }
		// 得到字符数组
        char[] chars = s.toCharArray();
        // 记录开始位置
        int begin = 0;
        // 记录结束位置
        int end = 0;
        for (int i = 0; i < s.length() - 1; i++) {
            for (int j = i + 1; j < s.length(); j++) {
                if ((j - i + 1) > (end - begin + 1) && isValid(chars, i, j)) {
                    begin = i;
                    end = j;
                }
            }
        }
        return s.substring(begin, end + 1);
    }

    // 返回chars数组的[left,right]部分是否是回文的
    private boolean isValid(char[] chars, int left, int right) {
        while (left < right) {
            if (chars[left] != chars[right]) {
                return false;
            }
            left++;
            right--;
        }
        return true;
    }
}

中心扩散

将每"一位"作为中心向两边扩撒

每次扩散分两种情况

第一种情况是以当前那一位为中心向两边扩散

第二种情况是以当前那一位和下一位为中心向两边扩散

取这两种情况的最值max

如果max比maxLen大的话,更新begin

最后直接返回截取的字符串

示例代码

class Solution {
    public String longestPalindrome(String s) {
        if (s.length() < 2) {
            return s;
        }
        int begin = 0;
        int maxLen = 1;
        for (int i = 0; i < s.length(); i++) {
            int max = Math.max(expand(s, i, i), expand(s, i, i + 1));
            if (max > maxLen) {
                maxLen = max;
                begin = i - (max - 1) / 2;
            }
        }
        return s.substring(begin, maxLen + begin);
    }

    // 返回以s[left,right]为中心得到的最大的回文子串的长度
    public int expand(String s, int left, int right) {
        while (left >= 0 && right < s.length() && s.charAt(left) == s.charAt(right)) {
            left--;
            right++;
        }
        // right - left + 1 - 2(头尾两个不相等)
        return right - left - 1;
    }
}

动态规划

对于一个子串而言,如果它是回文串,并且长度大于 2,那么将它首尾的两个字母去除之后,它仍然是个回文串。

例如对于字符串 “ababa’”,如果我们已经知道 "bab” 是回文串这层关系,那么 "ababa” 一定是回文串,这是因为它的首尾两个字母都是a

使用dp[][]二位数组来存储这层关系

dp[i][j]表示s[i,j]是否是回文数

如果当前要判断的范围是dp[left][right],字符串长度为x

第一步先看首尾是否一致,

如果不一致,则dp[left][right]直接为false,

如果一致,则进入下一步判断

如果当前判断的字符串长度小于3

为什么是 3 ?

如果长度为1,则本身就是字符串,形成自回文

如果长度为2,则首尾一致的情况下,可以直接判断为回文

如果长度为3,则首尾一致的情况下,也可以直接判断回文

则直接将dp[left][right]赋值为true

反之将dp[left+1][right-1](即去掉首尾的时候是否为回文数)的回文结构赋值给dp[i][j]

这些结束后,当dp[left][right]是true时,

则将当前循环长度和存储的maxLen进行比较,

如果当前循环长度较大,则将其赋值给maxLen,将left赋值给begin

示例代码

public String longestPalindrome(String s) {
    int len = s.length();
    if(len < 2){
        return s;
    }
    int begin = 0;
    int maxLen = 1;
    char[] chars = s.toCharArray();
    boolean[][] dp = new boolean[len][len];
    // dp[i][j]即表示s[i..j]是否为回文数
    // 对角线即为每个字符本身那就可以直接初始化为true
    // 也可以不初始化这个,但是为了语义完整,最好还是加上
    for (int i = 0; i < len; i++) {
        dp[i][i] = true;
    }
    //x表示长度,从长度为2开始,因为长度为1的情况可以直接判断
    for (int x = 2 ; x <= len; x++) {
        //循环次数为总长度减当前循环的长度再加一
        for (int left = 0; left < len - x + 1; left++) {
            //x=right-left+1
            int right = x + left - 1;
            if(chars[left] != chars[right]){
                dp[left][right] = false;
            }else {
                if(x < 4){
                    dp[left][right] = true;
                }else {
                    dp[left][right] = dp[left+1][right-1];
                }
            }
            if(dp[left][right] && x > maxLen){
                begin = left;
                maxLen = x;
            }
        }
    }
    return s.substring(begin, maxLen+begin);
}

先来看 dp 数组,假设长度是5

PS: 1 代表true,0 代表false

在这里插入图片描述

现在任务就是根据这一条主对角线然后推演出右上三角的数据,在推演过程中更新最大值

dp[i][j]的状态可能要通过dp[i + 1][j - 1]得知,所以需要按照此顺序斜着遍历

在这里插入图片描述

那就使用斜遍历即可,这里使用相对于对角线的偏移

public String longestPalindrome1(String s) {
    int len = s.length();
    char[] sArray = s.toCharArray();
    int maxLen = 1;
    int begin = 0;
    boolean[][] dp = new boolean[len][len];
    // 对角线初始化位true
    for (int i = 0; i < len; i++) {
        dp[i][i] = true;
    }
    for (int offset = 1; offset < len; offset++) {
        for (int j = offset; j < len; j++) {
            int i = j - offset;
            System.out.println(i + " " + j);
            if (sArray[i] != sArray[j]) {
                dp[i][j] = false;
            } else {
                if (offset + 1 < 4) {
                    // 如果长度是2或者3,直接赋值true即可
                    dp[i][j] = true;
                } else {
                    dp[i][j] = dp[i + 1][j - 1];
                }
                if (dp[i][j] && j - i + 1 > maxLen) {
                    // 更新最大值
                    maxLen = j - i + 1;
                    // 更新开始位置
                    begin = i;
                }
            }
        }
    }
    return s.substring(begin, begin + maxLen);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝麻\n

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值