目录
这篇论文提出了一种基于双偏振雷达变量垂直廓线特征的短时强降水和雷暴大风短时临近预报方法,称为CSCPVP方法。其核心思想是通过改进后的贝叶斯概率方法,将双偏振雷达的垂直廓线特征(如差分反射率、差分传播相移等)引入外推模型,从而实现强对流灾害的提前识别,进一步提高短时强降水和雷暴大风的预报能力。以下是论文的详细解读:
研究目标与方法
-
强对流天气的挑战:
- 雷暴大风(≥17.2 m/s)和短时强降水(≥20 mm/h)是强对流天气的重要类型,常带来严重的人员伤亡和经济损失。由于强对流天气系统的尺度较小且发展迅速,预报具有较高难度。
-
双偏振雷达数据:
- 双偏振雷达能够提供关于降水粒子的类型、形状、大小等三维信息,特别是在强对流系统的微物理结构演变方面具有重要意义。
- 论文提出通过采集双偏振雷达变量(如差分反射率、差分传播相移率等)的垂直廓线数据,并对其进行归一化处理,从而更准确地捕捉对流云团的物理特征。
-
贝叶斯概率方法:
- 引入贝叶斯概率方法,结合雷达变量特征的先验信息与最大似然估计,进行强对流灾害的概率预报。这使得模型在进行预报时能够更精确地识别强对流天气发生的可能性。
-
CSCPVP模型:
- 基于双偏振雷达变量的垂直廓线特征,构建了CSCPVP模型来识别强对流的概率。该模型能够提供0~2小时的短时强降水和雷暴大风的预报。
- 该方法在外推时还结合了区域模式预报的宽泛约束,确保预报结果符合实际的物理和动力机制。
结果与应用
-
性能评估:
- 论文通过2023年6—9月浙江地区的数据,对CSCPVP方法进行了评估。评估结果表明,CSCPVP方法相比现有的业务方法(如SML方法、SCMOC方法)在短时强降水和雷暴大风的0~2小时预报中均有显著提升。
- CSCPVP方法的短时强降水的CSI(临界成功指数)从8%~16%提升至22%~26%,雷暴大风的CSI从7%提升至10%~11%,显著减少了漏报和虚警率。
-
实际应用与效果:
- 该方法在不同类型的强对流天气过程(如暖区强对流、边缘强对流)中的预报效果表现优异。通过改进贝叶斯方法和区域模式的结合,能够提前识别强对流事件,并较好地控制了空报率和漏报率。
- CSCPVP方法不仅适用于局地性强对流,也能处理具有系统性的强对流天气过程,其在不同气象背景下的应用均表现出较高的预报准确性。
结论
- 创新性:
- CSCPVP方法通过融合双偏振雷达变量的垂直廓线特征以及改进的贝叶斯概率模型,有效提升了短时强降水和雷暴大风的临近预报能力。
- 未来改进方向:
- 未来可以根据不同天气类型的动力和物理机制,进一步优化模型参数,以提升预报的准确度,尤其是在极端强降水和雷暴大风的预报中。
总之,这篇论文提出的CSCPVP方法为短时强降水和雷暴大风的预报提供了一个创新的框架,结合了双偏振雷达的数据和贝叶斯方法,显著提升了预报精度,并且对现有的预报系统进行了有效的补充。