第六届全国工业互联网数据创新应用大赛 (双赛道 季军)

文章探讨了在氢电池和液晶面板性能预测中的数据处理和模型选择。对于氢电池,尽管数据量小但序列数据丰富,适合数据增强和树模型,但结果易受异常样本影响。液晶面板问题中,关注鲁棒性特征以减少过拟合,发现AB榜数据一致性。
摘要由CSDN通过智能技术生成

氢电池赛道

比赛方提供了很大数据量的真实场景数据,也提供了清洗数据的脚本。预测目标为 氢电池在稳态状态下的性能均值。

数据说明

  • 预测目标:氢电池性能在一段时间范围内的均值
  • 154维输入:
  • 自变量
    – 控制程序版本号、空气路设定 等
  • 因变量
    – 电气路电流、冷却路反馈、环境反馈 等

解题思路

  1. 样本量较少,但是序列数据充足,比较适合做数据增强
  2. 单特征分析,找到那几个存在leak
    在这里插入图片描述

算法选择

由于数据量少,树模型表现更好,使用树模型进行建模。

总结

虽然融合了很多模型,但是最终榜单的分数抖动很大,基本上翻倍了,分数受到少数异常样本的影响很大,基本上就是看谁的随机种子更好了。

液晶面板

数据说明

  • 评价指标:RMSE
  • 问题类型:多变量回归
  • 输入数据:
    – 239个训练数据
    – 50个测试数据
    – 27维的匿名时间序列输入
  • 加工分为10个阶段:Prehea,NH3,pv2,PL ……
    – 不同阶段的持续时间不等
  • 预测标签:均值在3000附近的28维数值

解题思路

  1. 单特征选择,找到几个比较鲁棒的特征
  2. 数据量较少,尽量减少过拟合

算法选择

  1. 数据量少的时候树模型更优

总结

最后选择模型的时候没有选择a榜分数第一的模型,虽然通过分析发现了ab很可能榜存在联系,但是没想到最后ab榜数据几乎一致。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无敌叉烧包z

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值