关于我用iVX沉浸式体验了一把0代码项目创建

写在前面的话:iVX是什么?

简单来说:iVX = 前后端代码生成器 + 云资源(可选)。

iVX是一个浏览器的iDE(集成开发环境),尽可能无代码并能支持全场景应用的开发;尽可能一次开发支持多套系统运营;并且对云和应用导出部署有良好的支持。

打开网页就能用,拖拽+配置方式实现无代码开发。“全场景+全系统”支持,可一键发布为网页、APP、桌面应用、小程序和小游戏等。

支持结合代码开发,提高传统开发模式的效率,程序员可以写“插件/CSS/SQL语句/JS函数”,接入外部系统、数据库、自定义组件库和SDK。

在这里插入图片描述

iVX适合云原生开发吗?

未来一定是一个“全民编程时代”。那么在云原生时代,如何进行高效且有质量的开发呢?国内的平台层出不穷,我个人推荐iVX平台。

iVX的学习并不需要什么特别的技术和基础,只要你觉得自己的“逻辑能力”还不错,应该都可以很好掌握这门编程语言。

总体来说iVX适合(但不限于)以下用户使用:

1、想要学习并未来从事互联网编程的人
2、想要转型互联网工作的人或学生
3、在校学生和老师(计算机相关专业、艺术设计相关专业、理工科等)
4、初级中级的前端或后台开发者

在这里插入图片描述

1、应用创建

首先我们进行应用创建。
在这里插入图片描述
可以通过这种方式创建你的应用,也可以通过个人主页工作台中去创建应用。

在这里插入图片描述

2、应用类型的选择

当我们选择好创建作品的类型之后,后续就不可以更改了。所以根据开发的需要,选择好类型即可。

可供选择的类型又:WebApp、小游戏、原生微信小程序等等。

在这里插入图片描述

3、组应用创建

对于组应用,组内应用的后台可以使用同一套数据库,换句话来说就是,如果我们创建了一套多端开发的应用,我们希望多端应用能够使用同一个数据库,那么这个时候就可以使用组应用的方法来达到目的。

创建过程如下:点击如下的文件左上角,选择新建组应用即可。如下图所示。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

4、选择一个合适的Demo快速上手辅助

在主页面中,我们可以进入到demo页面,选择一些比较非常通用的业务需求开发点Demo进行辅助开发。
在这里插入图片描述
这里我们选择一个数据分页Demo来尝试~

在这里插入图片描述
点击下载,就可以下载到我们创建好的项目中直接去开发使用了~,设置属性、更改参数等等。真正的体验到不需要代码,只需要设置一些参数、属性等等就可以进行开发!
在这里插入图片描述

在这里插入图片描述

总结:iVX编辑器上手~

看到这了,心动了嘛,快来上手吧!感兴趣的同学们可以去公众号:iVX公众服务平台 进行了解!。

  • 29
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 27
    评论
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。
众所周知,人工智能是当前最热门的话题之一, 计算机技术与互联网技术的快速发展更是将对人工智能的研究推向一个新的高潮。 人工智能是研究模拟和扩展人类智能的理论与方法及其应用的一门新兴技术科学。 作为人工智能核心研究领域之一的机器学习, 其研究动机是为了使计算机系统具有人的学习能力以实现人工智能。 那么, 什么是机器学习呢? 机器学习 (Machine Learning) 是对研究问题进行模型假设,利用计算机从训练数据中学习得到模型参数,并最终对数据进行预测和分析的一门学科。 机器学习的用途 机器学习是一种通用的数据处理技术,其包含了大量的学习算法。不同的学习算法在不同的行业及应用中能够表现出不同的性能和优势。目前,机器学习已成功地应用于下列领域: 互联网领域----语音识别、搜索引擎、语言翻译、垃圾邮件过滤、自然语言处理等 生物领域----基因序列分析、DNA 序列预测、蛋白质结构预测等 自动化领域----人脸识别、无人驾驶技术、图像处理、信号处理等 金融领域----证券市场分析、信用卡欺诈检测等 医学领域----疾病鉴别/诊断、流行病爆发预测等 刑侦领域----潜在犯罪识别与预测、模拟人工智能侦探等 新闻领域----新闻推荐系统等 游戏领域----游戏战略规划等 从上述所列举的应用可知,机器学习正在成为各行各业都会经常使用到的分析工具,尤其是在各领域数据量爆炸的今天,各行业都希望通过数据处理与分析手段,得到数据中有价值的信息,以便明确客户的需求和指引企业的发展。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 27
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员洲洲

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值