摘要
本篇论文研究的是基于车牌识别技术的智能停车场管理系统,采用基于深度学习的车牌识别算法,通过卷积神经网络对车牌图像进行处理和分析,实现车牌字符的识别和车牌信息的提取。同时,本文还设计了一个智能停车场管理系统,包括车位管理、车辆识别、支付管理、数据分析等多个模块,实现了停车场的智能化管理和优化。另外,还讨论了系统的功能需求和非功能需求,以及开发环境和集成开发工具的选择。测试结果表明,停车场车牌识别系统的各个模块均能够正常运行,能够完成车牌识别、车位管理、车辆信息管理等基本功能,并且在高并发情况下能够保持较好的性能表现。本文的研究成果为停车场管理提供了一种智能化的解决方案,具有较高的实用价值和应用前景。
本文目录
研究背景
随着社会经济的快速发展和人民生活水平的提高,人们对出行的需求也在逐步增加。在这种情况下,私家车作为一种便捷、灵活的出行方式,受到越来越多人的青睐。特别是在城市化进程的不断推进中,城市人口的增加和城市规模的扩大,更进一步促进了私家车的普及和使用。可以说,如今私家车已经成为人们生活中不可或缺的一部分,它不仅能够满足人们的出行需求,还能够提高人们的生活质量和社会地位。私家车数量不断增加,但是城市土地有限,城市停车位数量的增长速度无法跟上私家车数量的增长速度,导致城市停车位数量相对较少,停车难问题日益突出。
论文大纲
1. 车牌识别算法设计与实现
1.1 数据集收集和筛选
车牌识别系统的设计与实现中,构建准确且丰富的数据集是至关重要的一步,数据集需要足够大、