计算机图形学-曲线和曲面

8.1基本概念 8.2三次样条 8.3Bezier曲线曲面 8.4B样条曲线曲面 8.5有理样条曲线曲面

一、曲线曲面数学描述的发展

弗格森双三次曲面片 (形状控制与连接问题)

孔斯双三次曲面片 (形状控制与连接问题)

样条方法 (解决插值问题,无局部调整的自由度,形状难以预测)

Bezier方法 (连接和局部修改问题)

B样条方法 (解决局部控制、连接问题,局部控制方便,形态灵活直观)

有理Bezier 

非均匀有理B样条方法

1991 NURBS标准 定义工业产品几何形状的唯一数学方法

二、曲线曲面的表示要求

唯一性 从已有信息得到的图形唯一

几何不变性 形状不随坐标系改变而改变。通常标量函数没有几何不变性,二参数曲线/曲面在某些情况下有。

易于定界 参数法易于定界

统一性 统一表示和处理各种曲线曲面情况(兼容度高)

易于实现光滑连接

几何直观 

三、曲线曲面的表示

关于参数法

特点:更满足形状数学描述要求

点动成线;

具有几何不变性;

通过对参数求导代替斜率,避免斜率无穷大

dy/dx = (dy/dt)/(dx/dt)

几何分量有界:t∈[0,1];

对方程直接仿射和投影

将自变量和因变量分开,明显的表示参数变化对变量的影响

四、插值与逼近

样条:模线样表法表示和传递自由曲面的形状

样条曲线:由多项式曲线段连接成的曲线,在边界处满足特定的连续条件

样条曲面:用两组正交样条曲线表示

型值点与曲线曲面的拟合:用一组型值点来指定曲线曲面的形状时,形状完全通过给定的型值点列

控制点与曲线曲面的逼近:用一组控制点来指定曲线曲面的形状时,求出的形状不必通过控制点列

(拟合 与 逼近)

   

求给定型值点之间曲线上的点称为曲线的插值。

控制/特征多边形:将连接有一定次序控制点的直线序列称为控制多边形或特征多边形,例如有图中的虚线部分。

五、连续性条件

假定参数曲线段pi以参数形式进行描述

参数连续性:

0阶参数连续性,记作Cº连续性,是指相邻曲线的对应几何位置连接

1阶参数连续性,记作C¹连续性,指代表两个相邻曲线段的方程在相交点处有相同的一阶导数

2阶参数连续性,记作C²连续性,指两个相邻曲线段的方程在相交点处具有相同的一阶和二阶导数

对于C²连续性,交点处的切向量变化率相同,曲线段之间平滑变化

几何连续性:(相对于参数连续性,只需成比例即可)

0阶几何连续性,记作Gº连续性,与0阶参数连续性的定义相同,对应连接

1阶几何连续性,记作G¹连续性,指一阶导数在相邻段的交点处成比例

2阶几何连续性,记作G²连续性,指相邻曲线段在交点处其一阶和二阶导数均成比例

六、样条描述

对于给定了控制点位置的样条参数曲线,需要给出对应的样条描述,以唯一确定这条曲线。

对于一条三维的n次样条参数多项式曲线的矩阵:

矩阵形式:

 

其中的T是关于参数t的幂次行向量矩阵(1 x(n+1)),C是系数矩阵((n+1)x 3).

系数矩阵C:

C = MsG

G是包含样条形式的几何约束条件的(n+1)x 3阶矩阵,Ms是一个(n+1)x(n+1)阶矩阵,又称为基矩阵,将几何约束值转化成多项式系数,提供样条曲线的特征。

最后得到的样条参数多项式曲线的矩阵表达式:

P(t) = TMsG

七、三次样条

1)给定n+1个控制点,可得到通过每个点的分段三次多项式曲线

t为参数;t=0对应起点,t=1对应终点。n+1个控制点会生成n条三次样条曲线段

2)自然三次样条

三次参数样条曲线具有C²连续性

 给定n+1个型值点,现通过这些点列构造一条自然三次参数样条曲线,要求在所有曲线段的公共连接处均具有位置、一阶和二阶导数的连续性,即自然三次样条具有C2连续性。

还需要两个附加条件解方程组。

 特点:适应于型值点分布比较均匀的场合,不能“局部控制”,即不能仅改变其中的一段而不改变其他部分

3)三次Hermite样条

定义:假定型值点Pk和Pk+1之间的曲线段为P(t),t∈[0,1],给定矢量Pk、Pk+1、Rk和Rk+1,则满足下列条件的三次参数曲线为三次Hermite样条曲线:

p(0)  = Pk

p(1)  = Pk+1

p'(0)  = Rk

p'(1)  = Rk+1

三次Hermite样条曲线的方程为:

其中的Mh是Ms边界约束矩阵的逆矩阵;Gh是曲线型值点及其切矢的矩阵。

 通常将T•Mh称为Hermite基函数(混合函数,调和函数),各分量为:

只要给定Gh就可以求出P(t)

特点:

可以局部调整,因为每个曲线段仅依赖于端点约束

基于Hermite样条的变化形式:Cardinal样条和Kochanek-Bartels样条

Hermite曲线具有几何不变性

八、Bezier曲线曲面(面向几何的)

也是参数多项式曲线,由一组控制多边形曲线的顶点唯一定义。

控制多边形的各顶点只有第一个和最后一个在曲线上

要增加某段曲线的阶次,仅需指定另一个中间顶点。

1)定义:对于有 n+1 个控制点的Bezier曲线段:

Bernstein基函数具有如下形式:(公式类似二项式定理)

 (假设当k=0,t=0时,tk=1,k!=1)

Bezier曲线是阶数比控制点少1的多项式

关于一/二/三阶Bezier曲线的表达式:

一次Bezier曲线(n=1)两个控制点,一次多项式

二次Bezier曲线(n=2)三个控制点,二次多项式

三次Bezier曲线(n=3)四个控制点,三次多项式

 BENk,n(t)是三次Bezier曲线的基函数,他们各自都是三次曲线,任何三次Bezier曲线都是他们的线性组合。

 

 2)Bezier曲线的性质

 1.函数值、导数值和切线

端点和端点函数值

p(0) = P0

p(1) = Pn

所以Bezier曲线总是通过起点和终点。

 一阶导数

p'(0) = n(P1 - P0)

p'(1) = n(Pn - P(n-1))

 所以Bezier曲线在起点处的切线位于前两个控制点的连线上,终点处的切线位于后两个控制点的连线上,即:起点和终点处的切线方向与起始和终止折线段的切线方向一致

 二阶导数

 Bezier曲线在起始点和终止点处的r阶导数分别取决于起始点或终止点以及最开始和最后的r个控制点

2.对称性

 保持控制多边形的顶点位置不变,仅仅把它们的顺序颠倒一下,将下标为k的控制点Pk改为下标为n-k的控制点Pn-k时,曲线保持不变,只是走向相反而已。

3.凸包性

 

 

t在0~1变化时,对于任一t值,基函数均为正,各项之和恒为1

 Bezier曲线各点均落在控制多边形各顶点构成的凸包(包含所有顶点的最小凸多边形)之中

 Bezier曲线的凸包性保证了曲线随控制点平稳前进而不会振荡

 4.几何不变性

曲线形状仅与控制多边形的顶点相对位置有关,与坐标系选择无关

5.差变减少性

如果控制多边形是平面图形,平面内任意直线与曲线交点数不多于直线与控制多边形的交点个数;推广至空间成立。

反映的是曲线比控制多边形波动少

6.控制顶点变化对曲线形状的影响

移动n次Bezier曲线的第i个控制点Pi,会在曲线上参数为t = i/n 的点 P(i/n) 处发生最大影响。因为相应的基函数在此处达到最大值。

3)Bezier曲面

 双三次曲面(略 P45 46)

性质

控制网格的四个角点正好是Bezier曲面的四个角点

控制网格最外一圈顶点定义Bezier曲面的四条边界,这四条边界均为Bezier曲线

几何不变性、对称性、凸包性等

4)不足

 控制多边形的顶点个数决定了Bezier曲线的阶数,且当顶点个数较大时,控制多边形对曲线的控制将会减弱;

 不能作局部修改,任何一个控制点位置的变化对整条曲线都有影响。

九、B样条曲线曲面

1)定义

 

 

 参数:

m是曲线的阶参数,(m-1)为B样条曲线的次数,曲线在连接点处具有(m-2)阶连续性

tk是结点值,T=(t0,t1,…tn+m)构成了m-1次B样条函数的节点矢量

结点矢量分为三种类型:均匀的,开放均匀的和非均匀的。B样条曲线的分类同理。

2)均匀周期性B样条曲线

结点沿参数轴均匀等距分布,即tk+1-tk=常数时,所生成的曲线称为均匀B样条曲线

基函数呈周期性。

例:

均匀二次(三阶)B样条曲线

关于起点和终点:

 对于由任意数目的控制点构造的二次均匀周期性B样条曲线来说,曲线的起始点位于头两个控制点之间,终止点位于最后两个控制点之间。

  对于高次多项式,起点和终点是m-1个控制点的加权平均值点。若某一控制点出现多次,样条曲线会更加接近该点。

/*

**********

曲线的起点和终点:

 均匀二次B样条曲线起点和终点处的导数:

***********

*/

三次周期性B样条曲线

取m=4,n=3,节点矢量为:T=(0,1,2,3,4,5,6,7):

 

 

 注意上面两张图矩阵和多项式系数的对应5)

3)开放均匀B样条曲线

在两端的结点值重复m次。可以看成特殊的均匀/非均匀B样条曲线。

具有与bezier相似的特征,当m = n+1 时,开放b样条曲线就是Bezier曲线。

当P0 = Pk时,生成封闭的曲线。

曲线起终点的切线与对应控制点连线平行。

十、B样条曲线性质

1.局部支柱性

B样条函数与Beizer的主要区别:基函数是否分段。

 基函数是分段函数,在参数变化范围内,每个基函数在tk到tk+m的子区间内函数值不为零,在其余区间内均为零,通常也将该特征称为局部支柱性

好处:

1)第k段曲线只由m个控制点组成(t ∈ [ tk,tk+1 ),m-1 ≤ k ≤m);要修改曲线,只需修改这m个控制顶点。

 2)修改控制顶点Pk对曲线的影响是局部的。对于均匀m次B样条曲线,调整一个顶点Pk的位置只影响B样条曲线在区间 [ tk,tk+1 ) 的部分,最多影响与该顶点有关的m段曲线。

2.凸组合性质

凸包性的进阶版:

B样条基函数的数值均大于等于0,他保证了B样条曲线的凸包性,B样条曲线必须处在控制多边形形成的凸包之内。同时,曲线的第k段处于m个对应的控制点形成的凸包内,整条B样条曲线位于各凸包的并集内。(较好的跟随性)

对比:

 3.连续性

若一结点矢量中结点均不相同,则m阶(m-1次)B样条曲线在结点处 m-2 阶连续。

B样条曲线的基函数次数与控制顶点个数无关。

存在重结点时:重结点处的连续性降低。结点的重复度为J,该处的连续性降低J阶。

如图:具有三重结点(重复度为2)的三次B样条,结点t₁重复度为2,连续性降低2阶,仅保持连续。若重复度为3,曲线退化为离散的控制顶点。 

4.导数

B样条曲线的导数曲线是一条 m-1 阶的B样条曲线。

5.几何不变性

6.差变减少性

十一、B样条曲面

B样条曲线的二维拓展。

 控制顶点、控制网格(特征网格)、B样条基函数。 B样条曲面具有与B样条曲线相同的局部支柱性、凸包性、连续性、几何不变性等性质。

十二、有理样条曲线/曲面

NURBS曲线曲面

定义

 有理B样条的表达式

 取不同的r值得到各种二次曲线。

曲面:公式略

性质:普遍性 局部性 凸包性 可微性 权因子

特点:

为自由型曲线曲面、初等曲线曲面的精确表示与设计提供了公共的数学形式;一个统一的数据库就能够存储这两类形状信息

为了修改曲线曲面的形状,既可以借助调整控制顶点,又可以利用权因子,因而具有较大的灵活性

计算稳定速度快

明确的几何解释和强有力的几何配套工具

几何和透视投影变换不变性

NURBS是非有理B样条形式以及有理与非有理Bezier形式的合适的推广

权因子的不合适应用可能导致很坏的参数化,甚至毁掉随后的曲面结构

某些技术用传统形式比用NURBS工作得更好。例如,曲面与曲面求交时,NURBS方法特别难于处理刚好接触的情况

某些基本算法,例如求反曲线曲面上的点的参数值,存在数值不稳定问题

------------------------2021-11-30-23:27--------------------------

  • 1
    点赞
  • 32
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值