【计算几何】判断一条线段和一段圆弧是否相交 & C++代码实现


一、前言

最近做项目,需要判断一条线段是否和一段圆弧相交,网上也没找到很好的解答(最主要是没有直接可以搬来用的代码,或者思路写得太过高深,我看不懂),于是决定自己想一个方法,写一个博客,将实现思路和完整代码都分享出来


二、线段与圆弧的代码表示

2.1 线段代码表示

线段可用两个点表示,点的对象如下所示,包含x和y坐标信息:

class Point {
public:
    Point(double px=0.0, double py=0.0) {
        x = px;
        y = py;
    }
    double x;
    double y;
};

2.2 圆弧代码表示

圆弧由圆心坐标、半径、起始和终止角度组成:

class Arc
{
public:
	Point centerpoint; // 圆心
	double radius; // 圆弧半径
	double bangle; // 起点角度
	double eangle; // 终点角度
};

三、实现思路及数学推导

3.1 第一步(粗略判断)

第一步(粗略判断):将线段当成直线,将圆弧当成圆,如果直线和圆不相交,则线段和圆弧必然不相交,否则进行下一步判断

首先,将线段扩展成一条直线,它的方程为: y = k x + c y=kx+c y=kx+c

根据线段的两个点(假设为 p 1 p_1 p1 p 2 p_2 p2,且 p 1 . x ≤ p 2 . x p_1.x\le p_2.x p1.xp2.x)信息,我们可以很轻易求出 k k k c c c 的取值

p 1 p_1 p1 p 2 p_2 p2 代入直线方程:

{ p 1 . y = k p 1 . x + c                  ( 1 ) p 2 . y = k p 2 . x + c                  ( 2 ) \begin{cases} p_1.y=kp_1.x+c\,\, \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 1 \right)\\ p_2.y=kp_2.x+c\,\, \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 2 \right) \end{cases} {p1.y=kp1.x+c             (1)p2.y=kp2.x+c             (2)

( 1 ) − ( 2 ) (1)-(2) (1)(2) 可得:

p 1 . y − p 2 . y = ( p 1 . x − p 2 . x ) k ⇒ k = p 1 . y − p 2 . y p 1 . x − p 2 . x               ( 3 ) p_1.y-p_2.y=\left( p_1.x-p_2.x \right) k \\ \Rightarrow k=\frac{p_1.y-p_2.y}{p_1.x-p_2.x} \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 3 \right) p1.yp2.y=(p1.xp2.x)kk=p1.xp2.xp1.yp2.y             (3)

( 3 ) (3) (3) 代入 ( 1 ) (1) (1) 可得:

p 1 . y = p 1 . y − p 2 . y p 1 . x − p 2 . x p 1 . x + c ⇒ c = p 1 . y − p 1 . y − p 2 . y p 1 . x − p 2 . x p 1 . x               ( 4 ) p_1.y=\frac{p_1.y-p_2.y}{p_1.x-p_2.x}p_1.x+c \\ \Rightarrow c=p_1.y-\frac{p_1.y-p_2.y}{p_1.x-p_2.x}p_1.x \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 4 \right) p1.y=p1.xp2.xp1.yp2.yp1.x+cc=p1.yp1.xp2.xp1.yp2.yp1.x             (4)

假设圆心坐标为 ( a , b ) (a,b) (a,b) ,半径为 r r r ,容易写出圆弧扩展而成的圆的方程如下所示:

( x − a ) 2 + ( y − b ) 2 = r 2               ( 5 ) (x-a)^2+(y-b)^2=r^2 \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 5 \right) (xa)2+(yb)2=r2             (5)

要判断直线和圆是否相交,需要将直线方程和圆方程进行联立得:

{ y = k x + c ( x − a ) 2 + ( y − b ) 2 = r 2 ⇓ ( x − a ) 2 + ( k x + c − b ) 2 = r 2 , 令 d = c − b ⇓ x 2 + a 2 − 2 a x + k 2 x 2 + d 2 + 2 k d x = r 2 ⇓ ( 1 + k 2 ) x 2 + ( 2 k d − 2 a ) x + a 2 + d 2 − r 2 = 0               ( 6 ) \begin{cases} y=kx+c \\ (x-a)^2+(y-b)^2=r^2 \\ \end{cases} \\ \Downarrow \\ (x-a)^2+(kx+c-b)^2=r^2,令d=c-b \\ \Downarrow \\ x^2+a^2-2ax+k^2x^2+d^2+2kdx=r^2 \\ \Downarrow \\ (1+k^2)x^2+(2kd-2a)x+a^2+d^2-r^2=0 \ \ \ \ \ \ \ \ \ \ \ \ \ \left( 6 \right) {y=kx+c(xa)2+(yb)2=r2(xa)2+(kx+cb)2=r2,d=cbx2+a22ax+k2x2+d2+2kdx=r2(1+k2)x2+(2kd2a)x+a2+d2r2=0             (6)

根据韦达定理判断一元二次方程 ( 6 ) (6) (6) 是否存在实数根:

Δ = ( 2 k d − 2 a ) 2 − 4 ( 1 + k 2 ) ( a 2 + d 2 − r 2 ) ⇒ { Δ < 0 : 式 ( 6 ) 不存在实数根 Δ ≥ 0 : 式 ( 6 ) 存在实数根 \varDelta=(2kd-2a)^2-4(1+k^2)(a^2+d^2-r^2) \Rightarrow \begin{cases} \varDelta<0: 式 (6) 不存在实数根 \\ \varDelta\ge0:式 (6) 存在实数根 \end{cases} Δ=(2kd2a)24(1+k2)(a2+d2r2){Δ<0:(6)不存在实数根Δ0:(6)存在实数根

如果式 ( 6 ) (6) (6) 不存在实数根,意味着直线和圆没有交点,此时线段和圆弧必然也没有交点,程序结束。

如果式 ( 6 ) (6) (6) 存在实数根,则可以解出直线与圆的两个交点的 X X X 方向坐标 x 1 x_1 x1 x 2 x_2 x2

x 1 = − ( 2 k d − 2 a ) + Δ 2 ( 1 + k 2 )  和  x 2 = − ( 2 k d − 2 a ) − Δ 2 ( 1 + k 2 ) x_1=\frac{-(2kd-2a)+\sqrt{\varDelta}}{2(1+k^2)} \ 和 \ x_2=\frac{-(2kd-2a)-\sqrt{\varDelta}}{2(1+k^2)} x1=2(1+k2)(2kd2a)+Δ   x2=2(1+k2)(2kd2a)Δ

x 1 x_1 x1 x 2 x_2 x2 分别代入直线方程 y = k x + c y=kx+c y=kx+c 可得两个交点的 Y Y Y 方向坐标 y 1 y_1 y1 y 2 y_2 y2

y 1 = k x 1 + c  和  y 2 = k x 2 + c y_1=kx_1+c \ 和\ y_2=kx_2+c y1=kx1+c  y2=kx2+c

需要注意的是:上面我们令直线方程为 y = k x + c y=kx+c y=kx+c,但当直线垂直时, k k k 其实是不存在的,上面的公式也就不再适用了。幸运的是,在这种情况下,直线方程会变得更加简单,即 x = c x=c x=c c c c 为一个常数。要求这个直线与圆的交点,只需要将 x = c x=c x=c 代入圆的方程中即可,如下所示:
{ x = c ( x − a ) 2 + ( y − b ) 2 = r 2 ⇓ ( c − a ) 2 + ( y − b ) 2 = r 2 ⇓ ( y − b ) 2 = r 2 − ( c − a ) 2 \begin{cases} x=c \\ (x-a)^2+(y-b)^2=r^2 \\ \end{cases} \\ \Downarrow \\ (c-a)^2+(y-b)^2=r^2\\ \Downarrow \\ (y-b)^2 = r^2 - (c-a)^2\\ {x=c(xa)2+(yb)2=r2(ca)2+(yb)2=r2(yb)2=r2(ca)2
显然,当且仅当 r 2 − ( c − a ) 2 ≥ 0 r^2 - (c-a)^2\ge0 r2(ca)20 时,直线与圆存在交点,且交点的横坐标相同,即 x 1 = x 2 = c x_1=x_2=c x1=x2=c;纵坐标分别为:
y 1 = b + r 2 − ( c − a ) 2  和  y 2 = b − r 2 − ( c − a ) 2 y_1=b+\sqrt{r^2 - (c-a)^2} \ 和\ y_2=b-\sqrt{r^2 - (c-a)^2} y1=b+r2(ca)2   y2=br2(ca)2

如果直线和圆存在交点,则进行下一步判断

3.2 第二步

第二步:判断直线和圆的两个交点是否在线段上,如果不在,说明线段和圆弧必然不相交,否则进行下一步判断

线段是连续的,所以可以通过区间判断两个交点是否在线段上

详细地说,我们已经知道线段的X轴方向的区间为 [ p 1 . x   ,   p 2 . x ] [p_1.x\ ,\ p_2.x] [p1.x , p2.x]

如果 x 1 x_1 x1 不在 [ p 1 . x   ,   p 2 . x ] [p_1.x\ ,\ p_2.x] [p1.x , p2.x] 区间内,则点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 不在线段上,也就不可能是线段和圆弧的交点

同理,如果 x 2 x_2 x2 不在 [ p 1 . x   ,   p 2 . x ] [p_1.x\ ,\ p_2.x] [p1.x , p2.x] 区间内,则点 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 也不可能是线段和圆弧的交点

如果点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 和点 ( x 2 , y 2 ) (x_2,y_2) (x2,y2) 都不是线段和圆弧的交点,则说明线段和圆弧必然不相交

否则进行下一步判断

3.3 第三步

第三步:根据前面的推导,假设已知直线和圆的一个在线段上的交点为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1),在这一步中,需要判断该点是否在圆弧上,如果在,则说明线段和圆弧相交,且交点为 ( x 1 , y 1 ) (x_1,y_1) (x1,y1)

在这一步中,需要使用圆的参数方程,为了方便表示,假设圆弧的起始角度和终止角度分别为 θ 1 \theta_1 θ1 θ 2 \theta_2 θ2,则圆弧的参数方程为:

{ x = a + r c o s θ      ( 7 ) y = b + r s i n θ      ( 8 )      , θ 1 ≤ θ ≤ θ 2 \begin{cases} x=a+rcos\theta \ \ \ \ \left( 7 \right) \\ y=b+rsin\theta \ \ \ \ \left( 8 \right) \\ \end{cases} \ \ \ \ ,\theta_1\le\theta\le\theta_2 {x=a+rcosθ    (7)y=b+rsinθ    (8)    ,θ1θθ2

( x 1 , y 1 ) (x_1,y_1) (x1,y1) 代入式 ( 7 ) (7) (7) 和式 ( 8 ) (8) (8) 中:

{ x 1 = a + r c o s θ y 1 = b + r s i n θ      , θ 1 ≤ θ ≤ θ 2 ⇓ { x 1 − a = r c o s θ      ( 9 ) y 1 − b = r s i n θ      ( 10 )      , θ 1 ≤ θ ≤ θ 2 \begin{cases} x_1=a+rcos\theta \\ y_1=b+rsin\theta \\ \end{cases} \ \ \ \ ,\theta_1\le\theta\le\theta_2 \\ \Downarrow \\ \begin{cases} x_1-a=rcos\theta \ \ \ \ \left( 9 \right) \\ y_1-b=rsin\theta \ \ \ \ \left( 10 \right) \\ \end{cases} \ \ \ \ ,\theta_1\le\theta\le\theta_2 {x1=a+rcosθy1=b+rsinθ    ,θ1θθ2{x1a=rcosθ    (9)y1b=rsinθ    (10)    ,θ1θθ2

( 10 ) (10) (10) ( 9 ) (9) (9) 可得:

y 1 − b x 1 − a = t a n θ ⇓ θ = a r c t a n ( y 1 − b x 1 − a ) \frac{y_1-b}{x_1-a}=tan\theta \\ \Downarrow \\ \theta = arctan(\frac{y_1-b}{x_1-a}) x1ay1b=tanθθ=arctan(x1ay1b)

如果解出的 θ \theta θ 不在区间 [ θ 1 , θ 2 ] [\theta_1,\theta_2] [θ1,θ2] 内,则说明点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 不在圆弧上

否则,点 ( x 1 , y 1 ) (x_1,y_1) (x1,y1) 在圆弧上,并且是线段和圆弧的一个交点

至此,证毕!

注意:使用 a t a n atan atan 函数计算反正切值时,返回值的取值范围是 [ − π 2 , π 2 ] [-\frac{\pi}{2},\frac{\pi}{2}] [2π,2π],而 θ \theta θ 的取值是 [ 0 , 2 π ] [0,2\pi] [0,2π],所以在实际代码中需要对角度进行转换


四、完整代码

// 圆周率
#define PI acos(-1)

// lineIsIntersectArc 的辅助函数:接着第二步判断(这个函数可能存在浮点数误差问题,导致判断结果有偏差)
bool lineIsIntersectArcAuxiliaryFunction(const DL_VertexData& p1, const DL_VertexData& p2, double a, double b, double theta1, double theta2, double x1, double y1) {
	// 2.3 判断交点是否在线段上
	if (p1.x <= x1 && x1 <= p2.x) {
		// 第三步:交点(x1,y1)在线段上,再判断该点是否在圆弧上,如果在,则说明线段和圆弧相交,且交点为(x1,y1)
		double theta = atan((y1 - b) / (x1 - a)) * 180.0 / PI;
		if (theta1 > theta2) {
			if (theta2 >= 0) {
				theta1 -= 360;
			}
			else {
				theta2 += 360;
			}
		}
		if (theta1 < 0 && theta2 < 0) {
			theta1 += 360;
			theta2 += 360;
		}
		// 修正 tan 的角度
		if (x1 < a) {
			theta += 180;
		}
		if (theta < 0) {
			theta += 360;
		}
		// 判断是否在边界,在边界其实就不算相交
		if (abs(theta1 - theta) <= 1e-12 || abs(theta2 - theta) <= 1e-12) {
			return false;
		}
		// 判断 theta 是否在圆弧范围内,如果在则(x1,y1)是线段和圆弧的交点,否则不是
		return theta1 < theta && theta < theta2;
	}
	return false;
}

// 判断一个线段是否和圆弧相交
bool lineIsIntersectArc(Point p1, Point p2, Arc arc){
		// 确保 p1.x < p2.x
	if (p1.x > p2.x) {
		DL_VertexData temp = p1;
		p1 = p2;
		p2 = temp;
	}
	// 简化圆弧的相关变量表示
	double a = arc.centerpoint.x;
	double b = arc.centerpoint.y;
	double r = arc.radius;
	double theta1 = arc.bangle;
	double theta2 = arc.eangle;
	// 开始判断
	if (abs(p1.x - p2.x) < 1e-12) {
		// 特殊处理 p1.x = p2.x 的情况
		double c = p1.x;
		double temp = r * r - (c - a) * (c - a);
		if (temp >= -1e-12) {
			// 第二步:判断直线和圆的两个交点是否在线段上,如果不在,说明线段和圆弧必然不相交,否则进行下一步判断
			// 2.1 计算两个交点的坐标(x1,y1)和(x2,y2)
			double x1 = c;
			double x2 = c;
			double y1 = b + sqrt(temp);
			double y2 = b - sqrt(temp);
			// 2.2 判断两个交点是否相等3
			if (abs(y1 - y2) < 1e-12) {
				// 两个交点相等,只需要对其中任意一个点进行判断即可
				return lineIsIntersectArcAuxiliaryFunction(p1, p2, a, b, theta1, theta2, x1, y1);
			}
			else {
				// 两个交点不相等,分别进行判断,只要其中一个是线段和圆弧的交点就返回 true
				return lineIsIntersectArcAuxiliaryFunction(p1, p2, a, b, theta1, theta2, x1, y1) || lineIsIntersectArcAuxiliaryFunction(p1, p2, a, b, theta1, theta2, x2, y2);
			}
		}
	}
	else {
		// 第一步(粗略判断):将线段当成直线,将圆弧当成圆,如果直线和圆不相交,则线段和圆弧必然不相交,否则进行下一步判断
		// 1.1 根据公式,计算直线方程 y=kx+c 中的 k 和 c
		double k = (p1.y - p2.y) / (p1.x - p2.x);
		double c = p1.y - (p1.y - p2.y) / (p1.x - p2.x) * p1.x;
		// 1.2 根据韦达定理判断式(6)是否存在实数根
		double d = c - b;
		double varDelta = pow(2 * k * d - 2 * a, 2) - 4 * (1 + k * k) * (a * a + d * d - r * r);
		if (varDelta >= -1e-12) {
			// 第二步:判断直线和圆的两个交点是否在线段上,如果不在,说明线段和圆弧必然不相交,否则进行下一步判断
			// 2.1 计算两个交点的坐标(x1,y1)和(x2,y2)
			double x1 = (2 * a - 2 * k * d + sqrt(varDelta)) / (2 * (1 + k * k));
			double x2 = (2 * a - 2 * k * d - sqrt(varDelta)) / (2 * (1 + k * k));
			double y1 = k * x1 + c;
			double y2 = k * x2 + c;
			// 2.2 判断两个交点是否相等
			if (varDelta < 1e-12) {
				// 两个交点相等,只需要对其中任意一个点进行判断即可
				return lineIsIntersectArcAuxiliaryFunction(p1, p2, a, b, theta1, theta2, x1, y1);
			}
			else {
				// 两个交点不相等,分别进行判断,只要其中一个是线段和圆弧的交点就返回 true
				return lineIsIntersectArcAuxiliaryFunction(p1, p2, a, b, theta1, theta2, x1, y1) || lineIsIntersectArcAuxiliaryFunction(p1, p2, a, b, theta1, theta2, x2, y2);
			}
		}
	}
	return false;
}

五、效果展示

有了判断一条线段和一段圆弧是否相交的函数之后,就可以用来判断圆弧是否和一个多边形相交了。最简单的思路就是用圆弧和多边形的每个边依次做判断,如果多边形的任意一条边和圆弧都不相交,则圆弧与多边形必然不相交。

交叉判断前,从下图可以看到,黄色部分就是圆弧和多边形出现了交叉重叠的情况

在这里插入图片描述

交叉判断后,圆弧与多边形的交叉情况完全消失~

在这里插入图片描述

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WSKH0929

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值