Description
我们要求找出具有下列性质数的个数(包含输入的正整数 n)。
先输入一个正整数 n(n≤1000),然后对此正整数按照如下方法进行处理:
不作任何处理;
在它的左边加上一个正整数,但该正整数不能超过上次加的数(第一次加则是原数)的一半;
加上数后,继续按此规则进行处理,直到不能再加正整数为止。Input
1 个正整数 n ( n ≤ 1000 )
Output
1 个整数,表示具有该性质数的个数。
Sample Input
6
Sample Output
6
Hint
满足条件的数为
6,16,26,126,36,136
#include <iostream>
using namespace std;
int n, g[1001];
int main()
{
cin >> n;
g[1] = 1;
for (int i = 1; i <= n; i++)
{
for (int j = 1; j <= i / 2; j++)
{
g[i] += g[j];
}
if (i > 1)
{
g[i]++;
}
}
cout << g[n] << endl;
return 0;
}
/*题目描述解释:左边加不超过新加的数一半的数。比如数字 4,左边加不超过它一半的数可以是 14、24;
14左边 1 的一半没有数可以加了。 24左边 2的一半是1可以组成124,所以一共有14、24、124、4 四种情况。
递推,构成数字 n 的可能数 dp[n],即 n前面加了 1~n/2 所有的可能数之和,而 1~n/2-1 的可能性包含在 dp[n-1] 里了。
所以判断下奇偶性,dp[i] = dp[i - 1] + (i & 1 ? 0 : dp[i / 2]);
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int dp[1100];
int main()
{
int n;
dp[0] = 1;
for(int i = 1; i < 1100; i ++)
dp[i] = dp[i - 1] + (i & 1 ? 0 : dp[i / 2]);
while(scanf("%d", &n) != EOF)
printf("%d\n", dp[n]);
return 0;
}