数的计算(递推)

Description

我们要求找出具有下列性质数的个数(包含输入的正整数 n)。
先输入一个正整数 n(n≤1000),然后对此正整数按照如下方法进行处理:
不作任何处理;
在它的左边加上一个正整数,但该正整数不能超过上次加的数(第一次加则是原数)的一半;
加上数后,继续按此规则进行处理,直到不能再加正整数为止。

Input

1 个正整数 n ( n ≤ 1000 )

Output

1 个整数,表示具有该性质数的个数。

Sample Input

6

Sample Output

6

Hint

满足条件的数为
6,16,26,126,36,136

#include <iostream>
using namespace std;

int n, g[1001];

int main()
{
    cin >> n;
    g[1] = 1;
    for (int i = 1; i <= n; i++)
    {
        for (int j = 1; j <= i / 2; j++)
        {
            g[i] += g[j];
        }
        if (i > 1)
        {
            g[i]++;
        }
    }
    cout << g[n] << endl;
    return 0;
}
/*题目描述解释:左边加不超过新加的数一半的数。比如数字 4,左边加不超过它一半的数可以是 14、24;

14左边 1 的一半没有数可以加了。 24左边 2的一半是1可以组成124,所以一共有14、24、124、4 四种情况。

递推,构成数字 n 的可能数 dp[n],即 n前面加了 1~n/2 所有的可能数之和,而 1~n/2-1 的可能性包含在 dp[n-1] 里了。

所以判断下奇偶性,dp[i] = dp[i - 1] + (i & 1 ? 0 : dp[i / 2]);
*/
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
int dp[1100];

int main()
{
    int n;
    dp[0] = 1;
    for(int i = 1; i < 1100; i ++)
        dp[i] = dp[i - 1] + (i & 1 ? 0 : dp[i / 2]);
    while(scanf("%d", &n) != EOF)
        printf("%d\n", dp[n]);
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值