在一个 n * m 的二维数组中,每一行都按照从左到右 非递减 的顺序排序,每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。
示例:
现有矩阵 matrix 如下:
[
[1, 4, 7, 11, 15],
[2, 5, 8, 12, 19],
[3, 6, 9, 16, 22],
[10, 13, 14, 17, 24],
[18, 21, 23, 26, 30]
]
给定 target = 5,返回 true。
给定 target = 20,返回 false。
限制:
0 <= n <= 1000
0 <= m <= 1000
暴力搜索
遍历,查找。
时间:O(mn)
空间:O(1)
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
for(int []row :matrix){
for(int element: row){
if(target==element)return true;
}
}
return false;
}
}
二分查找
在每一行中使用二分查找法
时间:每行中为O(logm),最多n次,共计O(nlogm)
空间:O(1)
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
for(int []row : matrix){
if(search(row,target))return true;
}return false;
}
public boolean search(int []row,int target){
int low=0,high=row.length-1;
while(low<=high){
int mid=(high-low)/2+low;
if(target==row[mid])return true;
if(target<row[mid])high=mid-1;
else low=mid+1;
}
return false;
}
}
Z字形查找
从矩阵的右上角开始查找,假设当前位置为(x,y),将搜索范围锁定在左下角和(x,y)框成的矩阵中,将matrix[x][y]与target比较,相等则返回true;小于target则说明在y列以左,将y减一,缩小范围继续查找;大于target则说明在x行以下,将x加一,缩小范围继续查找
时间:O(m+n),因为x最多能加n次,y最多能减m次
空间:O(1)
class Solution {
public boolean findNumberIn2DArray(int[][] matrix, int target) {
int n = matrix.length;
if(n==0)return false;
int m = matrix[0].length;
int x=0,y=m-1;
while(x<n && y>=0){
if(matrix[x][y]==target)return true;
if(matrix[x][y]>target)y--;
else x++;
}
return false;
}
}
考虑空数组!第一次交的时候没有考虑空数组的情况,如果数组为[],那么再算matrix[0].length就会报错!