剑指offer 04 二维数组中的查找

在一个 n * m 的二维数组中,每一行都按照从左到右 非递减 的顺序排序,每一列都按照从上到下 非递减 的顺序排序。请完成一个高效的函数,输入这样的一个二维数组和一个整数,判断数组中是否含有该整数。

示例:

现有矩阵 matrix 如下:

[

[1, 4, 7, 11, 15],

[2, 5, 8, 12, 19],

[3, 6, 9, 16, 22],

[10, 13, 14, 17, 24],

[18, 21, 23, 26, 30]

]

给定 target = 5,返回 true。

给定 target = 20,返回 false。

限制:

0 <= n <= 1000

0 <= m <= 1000

暴力搜索

遍历,查找。

时间:O(mn)

空间:O(1)

class Solution {
    public boolean findNumberIn2DArray(int[][] matrix, int target) {
        for(int []row :matrix){
            for(int element: row){
                if(target==element)return true;
            }
        }
        return false;
    }
}

二分查找

在每一行中使用二分查找法

时间:每行中为O(logm),最多n次,共计O(nlogm)

空间:O(1)

class Solution {
    public boolean findNumberIn2DArray(int[][] matrix, int target) {
        for(int []row : matrix){
            if(search(row,target))return true;
        }return false;
        
    }
    public boolean search(int []row,int target){
        int low=0,high=row.length-1;
        while(low<=high){
            int mid=(high-low)/2+low;
            if(target==row[mid])return true;
            if(target<row[mid])high=mid-1;
            else low=mid+1;
        }
        return false;
    }
}

Z字形查找

从矩阵的右上角开始查找,假设当前位置为(x,y),将搜索范围锁定在左下角和(x,y)框成的矩阵中,将matrix[x][y]与target比较,相等则返回true;小于target则说明在y列以左,将y减一,缩小范围继续查找;大于target则说明在x行以下,将x加一,缩小范围继续查找

时间:O(m+n),因为x最多能加n次,y最多能减m次

空间:O(1)

class Solution {
    public boolean findNumberIn2DArray(int[][] matrix, int target) {
        int n = matrix.length;
        if(n==0)return false;
        int m = matrix[0].length;
        int x=0,y=m-1;
        while(x<n && y>=0){
            if(matrix[x][y]==target)return true;
            if(matrix[x][y]>target)y--;
            else x++;
        }
        return false;
    }
}

考虑空数组!第一次交的时候没有考虑空数组的情况,如果数组为[],那么再算matrix[0].length就会报错!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值