AcWing蓝桥杯辅导课:第三讲 数学与简单DP

AcWing 1205. 买不到的数目

在这里插入图片描述
思路:

裴蜀定理: 对任何整数 a a a b b b,存在整数 x x x y y y,使得 a x + b y = ( a , b ) ax + by = (a, b) ax+by=(a,b) ( a , b ) (a, b) (a,b)表示 a a a b b b的最大公因数,令 d = ( a , b ) d=(a, b) d=(a,b)。若 d = 1 d = 1 d=1,则 a n x + b n y = n d anx + bny = nd anx+bny=nd n n n 的取值即为整数 a a a b b b可以凑得的方案数,整数 a a a b b b凑不出来的数有一个上界,且一定小于 a b ab ab,因此可以枚举求凑不出来的最大值,或者使用结论:不能被表示出来的数有一个上界,上界为 a b − a − b ab - a - b abab

相关证明:a,b组合数不能表示的上界

思路:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/2/27 9:30
 */
public class Main {

    public static void main(String[] args) throws IOException {
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        String[] nm = in.readLine().split(" ");
        
        int n = Integer.parseInt(nm[0]), m = Integer.parseInt(nm[1]);
        
        out.println(n * m - n - m);
        out.flush();
    }

}

AcWing 1211. 蚂蚁感冒

在这里插入图片描述
思路:

首先判断感冒的蚂蚁往哪走。

  1. 往左走,则在该蚂蚁左边且往右走的蚂蚁都会感染。
  2. 往右走,则在该蚂蚁右边且往左走的蚂蚁都会感染。

否则最后感染的只有初始感冒的那一只。

代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/3/1 9:22
 */
public class Main {

    static final int N = 55;
    static int[] a = new int[N];
    static int n;

    public static void main(String[] args) throws IOException{
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));

        n = Integer.parseInt(in.readLine());
        String[] s = in.readLine().split(" ");
        int start = 0, l = 0, r = 0;
        // 1表示正,-1表示负
        int f = 0;
        for (int i = 1; i <= n; i++) {
            a[i] = Integer.parseInt(s[i - 1]);
            if (i == 1)
            {
                start = a[i];
                f = start > 0 ? 1 : -1;
            }
            // 往右走并且在感冒蚂蚁左边的
            if (a[i] > 0 && Math.abs(a[i]) < Math.abs(start)) l++;
            // 往左走并且在感冒蚂蚁右边的
            if (a[i] < 0 && Math.abs(a[i]) > Math.abs(start)) r++;
        }

        // 感冒蚂蚁往右走 但是 右边没有往左走
        // 感冒蚂蚁往左走 但是 左边没有往右走
        if ((f == 1 && r == 0) || (f == -1 && l == 0)) out.println(1);
        else out.println(l + r + 1);
        out.flush();

    }
}

AcWing 1216. 饮料换购

在这里插入图片描述
思路:

瓶盖数等于饮料数,每换一瓶饮料,瓶盖数 - 3,饮料数 + 1, 瓶盖数 + 1,最后当瓶盖数小于3时,就不能换购了。

代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/2/27 9:34
 */
public class Main {
    public static void main(String[] args) throws IOException {
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        int n = Integer.parseInt(in.readLine().split(" ")[0]);
        int ans = n;
        // 瓶盖数
        int cnt = n;

        while (cnt >= 3) {
            int tmp = cnt / 3;
            ans += tmp;
            cnt %= 3;
            cnt += tmp;
        }

        out.println(ans);
        out.flush();
    }
}

AcWing 2. 01背包问题

在这里插入图片描述

思路:
01背包问题,表示每个物品要么放,要么不放。从集合的角度分析DP问题,状态表示为:选择前i个物品,总体积小于等于j的选法的集合,属性f[i][j]表示价值的最大值。状态计算,因为每个状态可以表示为选择当前的物品,或者不选当前的物品,二者价值取最大值即可,即状态转移方程为:
f [ i ] [ j ] = m a x ( f [ i − 1 ] [ j ] , f [ i − 1 ] [ j − v i ] + w i ) , j ≥ v i f[i][j] = max(f[i - 1][j], f[i - 1][j - v_i]+w_i), j \ge v_i f[i][j]=max(f[i1][j],f[i1][jvi]+wi),jvi

一维优化

f[i][j] = f[i - 1][j];
f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);

变化为
f[j] = f[j] // 省略
f[j] = max(f[j], f[j - v[i]] + w[i])

由于f[i][j]需要用到第i - 1层的结果,j-v[i]严格小于j, j - v[i] 在第i层已经被算过了,所以用j-v[i]更新j时,用的是第i层的结果,j逆序,则 j 会比 j - v[i]先被计算,所以用到 j - v[i]时,用的是上一层即第 i - 1层的结果。

代码

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/2/27 9:39
 */
public class Main {

    static final int ln = 1005;
    static int[] v = new int[ln], w = new int[ln];
    static int[] dp = new int[ln];
    static int N, V;

    public static void main(String[] args) throws IOException {
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        String[] nv = in.readLine().split(" ");
        N = Integer.parseInt(nv[0]);
        V = Integer.parseInt(nv[1]);

        for (int i = 1; i <= N; i++) {
            String[] s = in.readLine().split(" ");
            v[i] = Integer.parseInt(s[0]);
            w[i] = Integer.parseInt(s[1]);
        }
        
        for (int i = 1; i <= N; i++) 
            for (int j = V; j >= v[i]; j--)
                dp[j] = Math.max(dp[j], dp[j - v[i]] + w[i]);
            
        out.println(dp[V]);
        out.flush();
    }
}

AcWing 1015. 摘花生

在这里插入图片描述

思路:

到达每一点有两种方式,一种是从该点左边,一种是从该点上边到达,则最大价值即为这两种方式的最大价值,加上该点的价值。

代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;


/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/3/1 9:55
 */
public class Main {
    static final int N = 105;
    static int[][] f = new int[N][N];
    static int t, r, c;

    public static void main(String[] args) throws IOException{
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));

        String T = in.readLine();
        t = Integer.parseInt(T);

        while (t-- != 0) {
            String[] rc = in.readLine().split(" ");
            r = Integer.parseInt(rc[0]);
            c = Integer.parseInt(rc[1]);

            for (int i = 1; i <= r; i++) {
                String[] s = in.readLine().split(" ");
                for (int j = 1; j <= c; j++) {
                    f[i][j] = Integer.parseInt(s[j - 1]);
                }
            }

            for (int i = 1; i <= r; i++) {
                for (int j = 1; j <= c; j++) {
                    f[i][j] += Math.max(f[i][j - 1], f[i - 1][j]);
                }
            }

            out.println(f[r][c]);
            out.flush();
        }
    }
}

AcWing 895. 最长上升子序列

在这里插入图片描述
思路:

线性DP的使用,状态是一维的,转移又是一维的,所以一共是两维。枚举每一个整数,则以该整数结尾的子序列的长度初始化为1,枚举该数之前的数,若大于之前的数,则状态转移,取长度的最大值。最后计算以每个整数结尾的子序列长度的最大值。

状态转移方程:

d p [ i ] = m a x ( d p [ i ] , d p [ j + 1 ] + 1 )   a [ i ] > a [ j ] ,   1 ≤ j ≤ i dp[i] = max(dp[i], dp[j+1] + 1) \: a[i] > a[j] ,\: 1 \le j \le i dp[i]=max(dp[i],dp[j+1]+1)a[i]>a[j],1ji

代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/2/27 9:54
 */
public class Main {

    static final int ln = 1005;
    static int[] a = new int[ln];
    static int[] dp = new int[ln];
    static int n;

    public static void main(String[] args) throws IOException {
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        String[] nv = in.readLine().split(" ");
        n = Integer.parseInt(nv[0]);

        String[] s = in.readLine().split(" ");

        for (int i = 1; i <= n; i++) a[i] = Integer.parseInt(s[i - 1]);

        int ans = 0;
        for (int i = 1; i <= n; i++) {
            dp[i] = 1;
            for (int j = i - 1; j > 0; j--) {
                if (a[i] > a[j]) dp[i] = Math.max(dp[i], dp[j] + 1);
            }
            ans = Math.max(ans, dp[i]);
        }


        out.println(ans);
        out.flush();
    }
}

AcWing 1212. 地宫取宝

在这里插入图片描述
思路:

本题数据范围较小,所以可能有多维,用闫氏DP分析法进行分析。

在这里插入图片描述
由于 0 ≤ C i ≤ 12 0 \le C_i \le 12 0Ci12,放价值为0的和不放物品等价,为了区分,将每一个物品的价值加一,则 1 ≤ C i ′ ≤ 13 1 \le C_i' \le 13 1Ci13

代码:

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.OutputStreamWriter;
import java.io.PrintWriter;

/**
 * @Description
 * @Author: PrinceHan
 * @CreateTime: 2023/3/1 10:15
 */
public class AC1212 {

    static final int N = 55, mod = 1000000007;
    static int[][] c = new int[N][N];
    // 前两维表示位置,第三维表示取了k个物品,第思维表示当前最大值
    static int[][][][] f = new int[N][N][13][14];
    static int n, m, k;

    public static void main(String[] args) throws IOException {
        BufferedReader in = new BufferedReader(new InputStreamReader(System.in));
        PrintWriter out = new PrintWriter(new OutputStreamWriter(System.out));
        String[] nmk = in.readLine().split(" ");

        n = Integer.parseInt(nmk[0]);
        m = Integer.parseInt(nmk[1]);
        k = Integer.parseInt(nmk[2]);


        for (int i = 1; i <= n; i++) {
            String[] s = in.readLine().split(" ");
            for (int j = 1; j <= m; j++) {
                c[i][j] = Integer.parseInt(s[j - 1]);
                // 因为不放物品与放价值为0的物品 价值是一样的 加1是为了区分
                // -1~12 0~13
                c[i][j]++;
            }
        }

        // 不取第一个物品的方案数为1
        f[1][1][0][0] = 1;
        // 取第一个物品的方案数为1
        f[1][1][1][c[1][1]] = 1;

        for (int i = 1; i <= n; i++) {
            for (int j = 1; j <= m; j++) {
                for (int u = 0; u <= k; u++) {
                    for (int v = 0; v <= 13; v++) {
                        // 不选 (i, j)
                        f[i][j][u][v] = (f[i][j][u][v] + f[i - 1][j][u][v]) % mod;
                        f[i][j][u][v] = (f[i][j][u][v] + f[i][j - 1][u][v]) % mod;
                        // 选 (i, j) v表示选择之后价值的最大值,所以选择的话 c[i][j] = v
                        if (u > 0 && c[i][j] == v) {
                            for (int c = 0; c < v; c++) {
                                f[i][j][u][v] = (f[i][j][u][v] + f[i - 1][j][u - 1][c]) % mod;
                                f[i][j][u][v] = (f[i][j][u][v] + f[i][j - 1][u - 1][c]) % mod;
                            }
                        }
                    }
                }
            }
        }

        int res = 0;
        for (int i = 0; i <= 13; i++)
            res = (res + f[n][m][k][i]) % mod;

        out.println(res);
        out.flush();
    }

}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值