有关ssd1306的报错

Traceback (most recent call last):
  File "<stdin>", line 7, in <module>
  File "ssd1306.py", line 116, in __init__
  File "ssd1306.py", line 36, in __init__
  File "ssd1306.py", line 61, in init_display
  File "ssd1306.py", line 121, in

write_cmd
OSError: [Errno 116] ETIMEDOUT

使用ssd1306屏幕运行microPython时,可能会出现类似报错,原因可能是引脚设置相冲突

i2c = I2C(scl = Pin(22),sda = Pin(21))

找到此命令并修改成正确的引脚即可 

### SSD 报错解决方案 #### 使用高速SSD作为交换空间缓解内存不足问题 当遇到 `mmseqs` 内存报错时,可以通过配置更大的 swap 分区来扩展虚拟内存。具体操作如下: ```bash sudo fallocate -l 64G /swapfile sudo chmod 600 /swapfile sudo mkswap /swapfile sudo swapon /swapfile ``` 此方法适用于物理内存不足以支持程序运行的情况[^1]。 #### 处理 numpy 版本引起的维度不一致问题 如果因更新 numpy 后出现 `ValueError: setting an array element with a sequence.` 错误,则可能是数据维度不匹配所致。建议检查数组形状并降级 numpy 至较低版本(如 1.19.x),或者调整代码逻辑以适配高版本 numpy 的行为[^2]。 #### 针对 PyTorch Legacy Autograd 函数的兼容性问题 对于 `Legacy autograd function with non-static forward method is deprecated.` 这类错误,通常是因为使用了较新的 PyTorch 版本(1.3 及以上)。解决办法是修改自定义函数中的 `forward` 方法,将其声明为静态方法。例如: ```python class MyFunction(torch.autograd.Function): @staticmethod def forward(ctx, input_tensor): ctx.save_for_backward(input_tensor) return result @staticmethod def backward(ctx, grad_output): saved_tensors = ctx.saved_tensors return computed_grad_input ``` 上述更改可确保代码在新版本 PyTorch 中正常工作[^4]。 #### Spark Shuffle FetchFailedException 的处理方式 虽然该问题主要涉及分布式计算框架 Spark,但如果 SSD 存储用于 shuffle 数据存储,也可能引发类似的 fetch failed 异常。常见优化措施包括增大 shuffle 文件缓冲区大小、启用压缩以及清理临时文件目录。以下是部分参数设置示例: ```properties spark.shuffle.file.buffer=64k spark.io.compression.codec=lz4 spark.cleaner.ttl=3600 ``` 更多细节参见相关文档说明[^3]。 综上所述,针对不同类型的 SSD 报错需采取针对性策略逐一排查修复。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值