某在线学习平台《数据挖掘》第六章课后习题

在线学习平台《数据挖掘》课后习题

本文章系本人结合讲义及网上学习资料整理,难免存在个别问题。仅供各位同学和爱好者参考和讨论。发现问题请各位码友留言勘误。谢谢!

1. 下列几种数据挖掘功能中被广泛的用于购物篮分析的是( )

AA.关联分析;                  

B B.分类和预测;

CC.聚类分析;

DD.演变分析

2、设X={1,2,3}是频繁项集,则可由X产生多少个关联规则( )

AA. 4;

BB. 5;

CC. 6;

DD. 7;

3、关联规则的支持度公式为( )

AA.support(A=>B)=P(A∩B);

BB.support(A=>B)=P(B|A); 

CC.support(A=>B)=P(A∪B);    

D D.support(A=>B)=P(A|B);

4、规则∅→A和A→∅的置信度是( )

AA. 50%;

BB. 75%;

CC. 90%;

DD. 100%;

5. 购买HDTV和购买健身器的情况如下表所示,设最小支持度阈值为0.3,最小置信度阈值为0.6,则{买HDTV }→{买健身器}的支持度为( )

 AA. 0.45;

BB. 0.55;

CC. 0.33;

DD. 0.27;

解析:├ support(A⇒B)=P(A∪B)   99➗300=33

6、上一题所给的数据中,{买HDTV }→{买健身器}的置信度为( )

AA. 0.65;

BB. 0.55;

CC. 0.49;

DD. 0.33;

解析:├ confidence(A⇒B)=P(B|A)  P(B|A)=P(AB)÷P(A)=0.33÷0.6

7、考虑如下的频繁3-项集:{1, 2, 3},{1, 2, 4},{1, 2, 5},{1, 3, 4},{1, 3, 5},{2, 3, 4},{2, 3, 5},{3, 4, 5}。选出根据Apriori 算法利用上述频繁3-项集生成的候选4-项集( )

A

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值