本文章系本人结合讲义及网上学习资料整理,难免存在个别问题。仅供各位同学和爱好者参考和讨论。发现问题请各位码友留言勘误。谢谢!
1. 下列几种数据挖掘功能中被广泛的用于购物篮分析的是( )
AA.关联分析;
B B.分类和预测;
CC.聚类分析;
DD.演变分析
2、设X={1,2,3}是频繁项集,则可由X产生多少个关联规则( )
AA. 4;
BB. 5;
CC. 6;
DD. 7;
3、关联规则的支持度公式为( )
AA.support(A=>B)=P(A∩B);
BB.support(A=>B)=P(B|A);
CC.support(A=>B)=P(A∪B);
D D.support(A=>B)=P(A|B);
4、规则∅→A和A→∅的置信度是( )
AA. 50%;
BB. 75%;
CC. 90%;
DD. 100%;
5. 购买HDTV和购买健身器的情况如下表所示,设最小支持度阈值为0.3,最小置信度阈值为0.6,则{买HDTV }→{买健身器}的支持度为( )
AA. 0.45;
BB. 0.55;
CC. 0.33;
DD. 0.27;
解析:├ support(A⇒B)=P(A∪B) 99➗300=33
6、上一题所给的数据中,{买HDTV }→{买健身器}的置信度为( )
AA. 0.65;
BB. 0.55;
CC. 0.49;
DD. 0.33;
解析:├ confidence(A⇒B)=P(B|A) P(B|A)=P(AB)÷P(A)=0.33÷0.6
7、考虑如下的频繁3-项集:{1, 2, 3},{1, 2, 4},{1, 2, 5},{1, 3, 4},{1, 3, 5},{2, 3, 4},{2, 3, 5},{3, 4, 5}。选出根据Apriori 算法利用上述频繁3-项集生成的候选4-项集( )
A