快速用上专属于自己的大模型&智能体

背景

昨天,公司同事突传喜讯,我们内部也成功部署了私有化的deepseek蒸馏模型,虽然参数量不大,但有了私有部署模型,就意味着,之前很多不能深入结合的业务,可以去做深入了。

毕竟公有模型终归还是存在数据隐私方面的风险,而一些租赁方案,或者所谓的MaaS(模型即服务)的方案,本质上还是建立在云服务的基础上,也就是云服务时代存在的问题MaaS都有,最显著的就是,高峰期需求大,服务不稳,低谷期需求小,服务稳,这基本属于自然现象了,没办法协调。

但我发现有些朋友,尤其是非技术类的用户,总感觉大模型这类产品和自己很远,所以他们不积极不主动的去接触,也就不去用,甚至一些技术人员传统观念根深蒂固,也把AI拒之千里之外。还有的人可能觉得这东西以后可能会替代自己,对自己的工作产生威胁等等,这里面可能有一些误解。当然本篇不会深入讨论这些问题,我认为AI一定会越来越普及,我们应该尽早的去面对AI普及带来的机遇和风险,如果AI真的对你的岗位存在威胁,那一味的远离可能会加速你被替代的时长!

所以本着打不过就加入的态度,我们应该积极的接触,应用,并驾驭AI,让他成为我们的工具,提高工作效率,而不是等着被替代!

这里,我想以一个小厂一线开发人员的视角出发,简单的聊一下,怎么快速的调教并构造出一个专属自己的大模型,也可以说是一个智能体(AI Agent)。

*部署模型

这里的部署,指的是,真正在服务器或者自己的机器上部署模型框架,目前这类方案跟多,大家可以自行gpt一下。

这不是本篇重点要聊的内容,我这里只简单介绍下Ollama,vLLM两个方向。

Ollama

Ollama最大的特点就是操作最简单,适合在自己的机器上操作,基本上有手就能操作。常用的命令我个人感觉和docker很像,只是把关键字换成ollama就行,比如拉取模型在ollama的命令就是

ollama pull xxx

其他的,大家看官方的文档即可

官网:ollama.com/

文档:github.com/ollama/olla…

vLLM

vLLM主要适合在服务器等生产环境部署,官网也提供了很多部署的路径,有基于GPU的,有基于CPU,还有基于NPU的,也提供了官方的docker镜像。

需要说明的是,vLLM本身是一个基于Python的库,也就是说它的上手门槛比Ollama高一些,但好在官方的文档给的非常具体,而且有专门的中文站点,如果有Python基础,上手部署也难度不大。感兴趣不怕折腾的小伙伴可以试试。

文档地址:vllm.hyper.ai/docs/

现在很多厂家推出了大模型一体机,配置给的都不低,单价基本在10w以内,比如MaxKB的一体机现在售价是3万一套,我感觉这也是私有化部署的一条路,有机房的话,一体机插到柜上就能用。

当然我没试过啊,但有同事说这东西不灵,说低于10w的配置都没法用,这个我就没办法验证了,我感觉这种一体机的思路挺好的,只要软硬件结合的好,一定是能大幅降低部署成本的。

构建专属模型&智能体

想要使用私有化的专属模型,一定要自己部署一套吗?

答案是否定的,只有部分的商用、政务等场景才需要真正部署私有化的模型,毕竟部署一套高可用的私有大模型,门槛还是挺高的,显卡,机柜等等硬件设备少说也得几十万起步。所以很多小厂在私有化大模型的选择上,还是走的租赁和MaaS的方案,这是现实原因,没得选。

那对于个人和用户量较少的企业用户来说,想要构造一个专属智能助手,还有没有更好的性价比方案呢?

我这里也推荐两个,分别是个人应用的AnythingLLM和适合小厂的MaxKb方案。

AnythingLLM

先奉上官方地址:anythingllm.com/

安装应用

它提供了基于Linux,Mac和Windows的客户端,我们可以根据自己的机器,下载对应的客户端安装即可。

安装流程和普通应用一样,装好后按提示进入软件即可!

如果大家完整看到它的安装流程,可以看到,它实际上也用到了Ollama的一些库,毕竟Ollama真的太方便了。

配置模型

按照引导,进入软件界面后,可以配置模型,可选的模型厂家包括,OpenAI,xAI,Azure,Deepseek等,这里我们选deepseek就好,如果你有其他厂家的key,选其他的也没问题。

选好之后,复制自己的APIKey到软件即可

创建工作区

工作区的概念每个人理解都不一样,我理解就是方便整理的,你可以把你的工作方向划分一下,创建不同的工作区,这样更加清晰。

非开发人员不了解的话,随便起个名字就好。

投喂训练

到此,基本的配置工作就完成了,我们可以上传本地的一些文档,图片等等,然后训练。

比如我这里准备一个本地工具的操作文档。我在投喂之前,先问他一个关于该工具的使用的问题,它的回答是这样的。

我投喂过这个文档之后,启动训练,结束后再次问同样的问题,他给我的回答就是基于该文档的内容了。

如果你是从事运营,产品,咨询,客服等需要对内部产品细节十分了解的岗位,或者就是普通用户,想更多的了解一些感兴趣的内容,借助这个软件,就可以定制一个专属的文档助手,不用再为繁杂的软件操作细节抓瞎,非常方便!

其他

除了提供基于桌面的应用,AnythingLLM也提供了云方案,同时也有本地部署的方案,和Ollama,vLLm的方向差不多,算是个全能型选手,感兴趣的可以参考一下官方文档(github.com/Mintplex-La…)的介绍!

MaxKb

简介

商用层面的话,MaxKb提供的解决方案我个人感觉还是挺清晰的,他们的产品有软件应用,有开发框架,还和主流云厂商做了对接,提供了便捷的插件,也有一体机这种硬件,关于更多他们的介绍,大家可以看一下它的官网:maxkb.cn/

本地部署

这里我主要聊一下本地部署MaxKb的RAG产品,开箱即用,非常方便。

官网提供了,离线,在线,阿里云,腾讯云,1panel,命令行这几种安装方式,我这里条件有限,就演示下在本地使用docker在线部署的方式。

首先根据文档确认下自己的机器是否满足安装条件,确认完成后,就可以拉取镜像安装了。

docker run -d --name=maxkb --restart=always -p 8080:8080 -v ~/.maxkb:/var/lib/postgresql/data -v ~/.python-packages:/opt/maxkb/app/sandbox/python-packages registry.fit2cloud.com/maxkb/maxkb

安装好后的效果如下


容器启动后,监听8080端口,可以直接在浏览器访问,之后使用默认的账号密码,就可以登录进来了。

实际上官方的文档也十分清楚,还是推荐看文档。

创建应用

后续的流程,实际上和AnythingLLM的逻辑差不多,也是先创建应用,然后绑定AI模型,MaxKb作为国产软件,对国产模型的支持度好很多。

而且,也支持本地模型。

这里,我绑定一个kimi的模型,其他道理一样,都是需要自己有一个APIkey。

其他参数可以先不管,去配置下知识库

配置知识库

配置知识库目的就是做检索增强(RAG),软件界面提供的操作流程也非常清晰方便,傻瓜式的按引导操作即可。

  • 创建

  • 上传本地文档

  • 分段

  • 训练

  • 训练完成

关联知识库

回到刚才创建的应用上,如果刚才没有关联知识库的话,现在可以关联一下

测试

绑定完以后,可以在旁边的调试窗口,测试一下效果

可以看到,它的回答正是根据上传到知识库里的内容输出的。

保存发布

测试没问题以后,就可以发布应用了,注意,这个应用是我们自己训练的应用哟,虽然它的底座还是公有模型,但已经可以使用我们本地的私有数据了,而且,没有隐私安全问题。

发布之后,可以到概览界面,使用MaxKb为我们创建的url,这个就可以放到私有业务的系统里使用了。

嵌入第三方

它这里还提供了一个非常好的功能,叫做“嵌入第三方”,当我们把模型配置好以后,可以点击这个“嵌入第三方”按钮,复制他为我们生成的代码到我们已有的其他系统里,就可以很方便的使用这个私有模型了。

我随便找了个页面,放上他为我们生成的代码,效果如下,丝滑流畅~

其他智能体

构建专属智能体的方向,还有Dify,扣子等,这些就稍微有一点门槛了,当然他们的功能也更丰富一些,可以实现一些流程化的操作,不仅限于检索增强这种所见即所得的领域,感兴趣的可以了解下。

当然如果有开发基础,也可以开发构建更加契合业务需求的智能体。说到这,笔者之前也写过这方面的博客,如《再尝Semantic Kernel,planning特性很香》,大家可以去给捧个场哈哈。

而我刚介绍的方案基本都不太需要有开发基础就能上手掌握,尤其AnythingLLM,适用于绝大部分人。

结语

好了,基本就是这些啦,再推荐一本关于大模型的书,叫做《大模型导论》,希望AI时代,我们每个人都能找准自己的定位,利用好AI,增强自己,而不是被取代。 最后再多说一句,大模型飞速发展,存在信息差是肯定的,如果你真的不了解AI,短期内也不想了解,就不要轻易相信那些在你面前扯各种AI概念的人,尤其是不熟的人,现在这方面的诈骗也挺多的,保护好自己。

 这份《AI产品经理学习资料包》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以在文末CSDN官方认证二维码免费领取【保证100%免费】
资料包: CSDN大礼包:《对标阿里黑客&网络安全入门&进阶学习资源包》免费分享


AI产品经理,0基础小白入门指南
作为一个零基础小白,如何做到真正的入局AI产品?

什么才叫真正的入局?

是否懂 AI、是否懂产品经理,是否具备利用大模型去开发应用能力,是否能够对大模型进行调优,将会是决定自己职业前景的重要参数。

你是否遇到这些问题:
1、传统产品经理

不懂Al无法对AI产品做出判断,和技术沟通丧失话语权
不了解 AI产品经理的工作流程、重点
2、互联网业务负责人/运营
对AI焦虑,又不知道怎么落地到业务中想做定制化AI产品并落地创收缺乏实战指导
3、大学生/小白
就业难,不懂技术不知如何从事AI产品经理想要进入AI赛道,缺乏职业发展规划,感觉遥不可及
为了帮助开发者打破壁垒,快速了解AI产品经理核心技术原理,学习相关AI产品经理,及大模型技术。从原理出发真正入局AI产品经理。

这里整理了一些AI产品经理学习资料包给大家
📖AI产品经理经典面试八股文
📖大模型RAG经验面试题
📖大模型LLMS面试宝典
📖大模型典型示范应用案例集99个
📖AI产品经理入门书籍
📖生成式AI商业落地白皮书

🔥作为AI产品经理,不仅要懂行业发展方向,也要懂AI技术,可以帮助大家:
✅深入了解大语言模型商业应用,快速掌握AI产品技能
✅掌握AI算法原理与未来趋势,提升多模态AI领域工作能力
✅实战案例与技巧分享,避免产品开发弯路

这份《AI产品经理学习资料包》已经上传CSDN,还有完整版的大模型 AI 学习资料,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费】
资料包: CSDN大礼包:《对标阿里黑客&网络安全入门&进阶学习资源包》免费分享

AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

大模型&AI产品经理如何学习
求大家的点赞和收藏,我花2万买的大模型学习资料免费共享给你们,来看看有哪些东西。

1.学习路线图


第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程
网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

(都打包成一块的了,不能一一展开,总共300多集)

因篇幅有限,仅展示部分资料,需要点击CSDN大礼包:《对标阿里黑客&网络安全入门&进阶学习资源包》免费分享前往获取

3.技术文档和电子书
这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。


4.LLM面试题和面经合集
这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。


👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。


1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

👉获取方式:
😝有需要的小伙伴,可以CSDN大礼包:《对标阿里黑客&网络安全入门&进阶学习资源包》免费分享免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值