网格搜索法

意义

通过网格搜索法,可以确定超参数的值。

过程

首先先导入数据:

import numpy as np
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import GridSearchCV

digits = datasets.load_digits()
X = digits.data
y = digits.target

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 666)

然后确定参数的值:

param_grid = [
    {
        'weights': ['uniform'],
        'n_neighbors': [i for i in range(1, 11)]
    },
    {
        'weights': ['distance'],
        'n_neighbors': [i for i in range(1, 11)],
        'p': [i for i in range(1, 6)]
    }
]

最后即可训练数据:

grid_search = GridSearchCV(knn_clf, param_grid)
grid_search.fit(X_train, y_train)

显示最佳分类器的参数:

grid_search.best_estimator_

显示运用此分类器的准确度:

grid_search.best_score_

显示我们最开始创建的param_grid中的最佳参数:

grid_search.best_params_

提升刚刚训练数据的速度:

grid_search = GridSearchCV(knn_clf, param_grid, n_jobs = -1, verbose = 2)
grid_search.fit(X_train, y_train)

引入了n_jobs,后面的数字即为计算机的核,当取-1时即所有核都进行此次运算。而后面的verbose是为了显示这个过程中的一些细节。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天一道题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值