Topsis与熵权法

定义

熵权法是一种客观赋权方法。
原理:指标的变异程度(方差)越小,所反映的信息量也越少,其对应的权值也应该越低。(客观 = 数据本身就可以告诉我们权重)

如何度量信息量的大小

在这里插入图片描述
通过上面的例子我们可以看出,越有可能发生的事情,信息量越少;越不可能发生的事情,信息量就越多。如果用概率表示的话,即概率越大,信息量越少,概率越小,信息量越大。
如果把信息量用I表示,概率用p表示,那么我们就可以建立一个函数关系:
在这里插入图片描述
假设x表示事件X可能发生的某种情况,p(x)表示这种情况发生的概率,则我们可以定义为:
在这里插入图片描述

信息熵

假设x表示事件X可能发生的某种情况,p(x)表示这种情况发生的概率。
在这里插入图片描述
注:当p(x)均为1/n时,H(x)取最大值,此时H(x) = ln n。

算法步骤

1.判断输入的矩阵中是否存在负数,如果有则要重新标准化到非负区间(后面计算概率时需要保证每一个元素为非负数)。
在这里插入图片描述
2.计算第j项指标下第i个样本所占的比重,并将其看作相对熵计算中用到的概率。
在这里插入图片描述
3.计算每个指标的信息熵,并计算信息效用值,并归一化得到每个指标的熵权。
在这里插入图片描述

代码

计算熵权:

function [W] = Entropy_Method(Z)
% 计算有n个样本,m个指标的样本所对应的的熵权
% 输入
% Z : n*m的矩阵(要经过正向化和标准化处理,且元素中不存在负数)
% 输出
% W:熵权,1*m的行向量

%% 计算熵权
    [n,m] = size(Z);
    D = zeros(1,m);  % 初始化保存信息效用值的行向量
    for i = 1:m
        x = Z(:,i);  % 取出第i列的指标
        p = x / sum(x);
        % 注意,p有可能为0,此时计算ln(p)*p时,Matlab会返回NaN,所以这里我们自己定义一个函数
        e = -sum(p .* mylog(p)) / log(n); % 计算信息熵
        D(i) = 1- e; % 计算信息效用值
    end
    W = D ./ sum(D);  % 将信息效用值归一化,得到权重    
end

由于担心概率为0自己定义的函数:

% 重新定义一个mylog函数,当输入的p中元素为0时,返回0
function [lnp] 
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

每天一道题

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值