幸运数
Description
幸运数是波兰数学家乌拉姆命名的。它采用与生成素数类似的“筛法”生成。
首先从1开始写出自然数1,2,3,4,5,6,....
1 就是第一个幸运数。
我们从2这个数开始。把所有序号能被2整除的项删除,变为:
1 _ 3 _ 5 _ 7 _ 9 ....
把它们缩紧,重新记序,为:
1 3 5 7 9 .... 。这时,3为第2个幸运数,然后把所有能被3整除的序号位置的数删去。注意,是序号位置,不是那个数本身能否被3整除!! 删除的应该是5,11, 17, ...
此时7为第3个幸运数,然后再删去序号位置能被7整除的(19,39,...)
最后剩下的序列类似:
1, 3, 7, 9, 13, 15, 21, 25, 31, 33, 37, 43, 49, 51, 63, 67, 69, 73, 75, 79, ...
Input
输入两个正整数m n, 用空格分开 (m < n < 1000*1000)
Output
程序输出 位于m和n之间的幸运数的个数(不包含m和n)。
Sample Input 1
1 20
Sample Output 1
5
Hint
HINT:时间限制:1.0s 内存限制:256.0MB
AC代码如下:
#include<iostream>
using namespace std;
#define max 1000001
int vis[max];//下标是否置零判定
int m, n,sum=0;
void init()//初始化为1,表示没有置零
{
for (int i = 1; i <= n; i++)
vis[i] = 1;
}
void zhiling()//置零操作
{
int i, j,num;
for (i = 2; i <= n; i++)//被筛选的数的倍数就做置零
{
if (vis[i] == 1)//当前数没有置零
{
for (j = 1, num = 0; j <= n; j++)//从头遍历到n,后面不用考虑
{
if (vis[j] == 1)//数数,数到有i个数,就将那个位置置零
num++;
if (num == i)
{
vis[j] = 0;
num = 0;
}
}
}
}
}
int main()
{
cin >> m >> n;
init();
zhiling();
for (int i = m + 1; i < n; i++)//统计不是零的个数
if (vis[i])
sum++;
cout << sum << endl;
return 0;
}