算法笔记(10):树上dp

题目
ac代码

#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

const int N = 6e3 + 5;

int r[N];
bool worker[N]; //标记第i个人是否有上司,用于找出校长
int n;
vector<int> edge[N]; //由于不一定是二叉树,故用图的方式存树
int dp[N][2];        //树上dp的特殊定义方式
                     //dp[i][1]代表第i个人参加时,i作为根节点的子树最优解;dp[i][0]代表第i个人不参加时,i作为根节点的子树最优解

//树这种结构更适合用dfs进行遍历
void dfs(int o)
{
    dp[o][1] = r[o];
    int len = edge[o].size();
    for (int i = 0; i < len; i++)
    {
        dfs(edge[o][i]);

        dp[o][1] += dp[edge[o][i]][0];
        dp[o][0] += max(dp[edge[o][i]][1], dp[edge[o][i]][0]);
    }
}

int main()
{
    int l, k;
    ios::sync_with_stdio(false), cin.tie(0);
    cin >> n;
    for (int i = 1; i <= n; i++)
        cin >> r[i];
    for (int i = 0; i < n - 1; i++)
    {
        cin >> l >> k;
        worker[l] = 1;
        edge[k].push_back(l);
    }
    //找校长(树的根节点)
    int headmaster;
    for (int i = 1; i <= n; i++)
    {
        if (!worker[i])
        {
            headmaster = i;
            break;
        }
    }
    //从根节点开始遍历
    dfs(headmaster);
    cout << max(dp[headmaster][1], dp[headmaster][0]);
    return 0;
}
树上dp的两个关键点
  1. dp数组的定义方式,定义dp[N][2],其意义为以i为根节点的子树的最优解。
  2. 递推的方式,对于树或者图这种数据结构,要使用dfs进行遍历,而不能用bfs,因为动态规划考虑递推,当递推到后面的式子是由前面推得的,故先要推导出叶子节点的有效值。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值