插值
当数据不足以支撑分析时,可使用插值,“模拟产生”一些新的但又比较靠谱的值来满足需求。
对于给定的(n+1)个插值节点,
,
,
和对应的函数值
,
,
,
进行插值。
拉格朗日插值(Lagrange interpolation)
n次Lagrange插值多项式
牛顿插值(Newton's interpolation)
k阶差商
n次牛顿插值多项式
牛顿插值法的计算过程具有继承性。牛顿插值法每次插值只和前n项的值有关,这样每次只要在原来的函数上添加新的项,就能够产生新的函数。
拉格朗日插值和牛顿插值均存在龙格现象(Runge phenomenon)。高次插值会产生龙格现象,即在两端处波动极大,产生明显的震荡。a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points. 在不熟悉曲线运动趋势的前提下,不要轻易使用高次插值。
拉格朗日插值和牛顿插值仅仅要求插值多项式在插值节点处与被插函数有相等的函数值,而这种插值多项式却不能全面反映被插值函数的性态。在许多实际问题中,不仅要求插值函数与被插值函数在所有节点处有相同的函数值,它也需要在一个或全部节点上插值多项式与被插函数有相同的低阶甚至高阶的导数值。
分段三次Hermite插值(Piecewise Cubic Hermite Interpolating Polynomial)


三次样条插值(Cubic spline data interpolation )
Cubic spline Interpolation - GeeksforGeeks

清风数学建模笔记