插值(Interpolation)

当数据不足以支撑分析时,可使用插值“模拟产生”新值。本文介绍了拉格朗日插值、牛顿插值、分段三次Hermite插值和三次样条插值。拉格朗日插值和牛顿插值存在龙格现象,高次插值易产生震荡,且不能全面反映被插值函数性态。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

插值

当数据不足以支撑分析时,可使用插值,“模拟产生”一些新的但又比较靠谱的值来满足需求。

对于给定的(n+1)个插值节点,,,和对应的函数值,,,进行插值。

拉格朗日插值(Lagrange interpolation)

n次Lagrange插值多项式

牛顿插值(Newton's interpolation)

k阶差商

n次牛顿插值多项式

牛顿插值法的计算过程具有继承性。牛顿插值法每次插值只和前n项的值有关,这样每次只要在原来的函数上添加新的项,就能够产生新的函数。

拉格朗日插值和牛顿插值均存在龙格现象(Runge phenomenon)。高次插值会产生龙格现象,即在两端处波动极大,产生明显的震荡。a problem of oscillation at the edges of an interval that occurs when using polynomial interpolation with polynomials of high degree over a set of equispaced interpolation points. 在不熟悉曲线运动趋势的前提下,不要轻易使用高次插值。

拉格朗日插值和牛顿插值仅仅要求插值多项式在插值节点处与被插函数有相等的函数值,而这种插值多项式却不能全面反映被插值函数的性态。在许多实际问题中,不仅要求插值函数与被插值函数在所有节点处有相同的函数值,它也需要在一个或全部节点上插值多项式与被插函数有相同的低阶甚至高阶的导数值。

分段三次Hermite插值(Piecewise Cubic Hermite Interpolating Polynomial

数值分析:插值与拟合 - 简书 (jianshu.com)

三次样条插值(Cubic spline data interpolation

Cubic spline Interpolation - GeeksforGeeks

清风数学建模笔记

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值