模型介绍
1.固定效应模型与随机效应模型:
对模型中的主要变量取自然对数,构建以下固定效应和随机效应模型:
(1)
(2)
对于固定效应模型表达式如(1)所示, 是不随时间变化的国家特定效应,它是个体固定效应,反映了每个横截面个体(例如,每个国家)的固有特征。
是随机误差项,代表了模型中未包含的随机因素。
对于随机效应模型表达式如(2)所示,是随机变量,表示横截面个体的个体特定效应,它反映了个体之间的随机异质性,并且假设与解释变量不相关,具有零均值和方差
。
是随机误差项,代表了模型中未包含的其他随机因素。
为了确定使用固定效应还是随机效应模型,我们进行了Hausman检验。该检验可以判断个体特定效应是否与模型中的解释变量相关。如果Hausman检验表明相关性存在,即选择固定效应模型作为主要的估计方法;如果不存在相关性,即考虑使用随机效应模型。
Hausman= (3)
其中, 是固定效应模型的估计参数,
是随机效应模型的估计参数,
是它们差异的方差。
2.中介模型
(4)
(5)
式(4)(5)中,MEDIATOR 表示中介变量。
实证检验
1.进行基准回归,选取固定效应和随机效应模型,并用hausman检验
xtset CODE2 YEAR
xtreg ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_EI, fe
outreg2 using RE.doc //这个可以导出结果到word
esti store FE1
xtreg ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_EI, re
esti store RE1
hausman FE1 RE1, constant sigmamore
根据上面的检验,判断是固定还是随机效应模型,我上面的结果显示需要选择固定效应模型
2.因此,接下来中介效应模型选择固定效应模型进行
以FD作为中介变量为例
(1)当FD作为因变量
xtreg ln_FD ln_I ln_U ln_P ln_IN ln_PO ln_EI, fe
outreg2 using FD作为因变量.doc
(2)当FD作为自变量加入模型中
xtreg ln_CO2 ln_FD ln_I ln_U ln_P ln_IN ln_PO ln_EI, fe
outreg2 using FD作为自变量.doc