“傻瓜”学计量——面板数据1(数据分类)(模型选择?混合vs固定vs随机)

提纲:

1.数据分类

2.模型选择?:混合模型、固定效应模型和随机效应模型

1 数据分类:

1.1 时间序列数据

定义:是指同一个指标按照时间顺序记录的数据列。在同一数据列中各个数据必须是同口径的,要求可比性

1.2 横截面数据

定义:横截面数据是在同一时间不同统计单位相同统计指标组成的数据列。

1.3 面板数据

定义:时间序列上取多个截面,在这些截面上同时选取样本观测值所构成的样本数据。

例子:一年内每天所有a股的开盘价(注:要是同一个指标)

优点:可以控制个体异质性

           提供更多信息(20%人是B站活跃用户。每个人的概率为20%or只有20%的人活跃)

缺点:收集 困难

           自选择问题

分类:

平衡面板数据非平衡面板数据
数据完整数据部分缺失。补全:不随时间变化的数据
长面板数据短面板数据
i个体  >  t时间  短面板数据
动态面板模型静态面板模型
包含被解释变量的滞后值,即往期值
伪面板数据轮换面板数据

要用的是“个体”特征值,

实际用整个群体的特征值来表示

每个时间所统计的个体中,

都有一定量的个体被新的个体替换

2 面板模型


总结(放前面啦)

不同面板模型的区别

如何选用合适的模型


2.1 混合模型Pooled model

不存在个体和时间不可观测因素,即:

2.2 固定效应模型:

举个不恰当的例子:

μi与X存在相关关系:例如一位“少数民族“up主,天生就会比产出流量相对较高的视频,这就会影响自变量”视频质量”,从而影响Y;

Vt与X存在相关关系:2008年奥运会,导致同一时产出相关内容的视频播放量普遍增长。

2.3 随机效应模型

(以上三种,均假设“自变量X对因变量Y的影响,对每个个体都是一样的,即系数\beta都相同)

2.4 变系数模型

系数\beta不都相同

资料来源:

面板数据4 模型简介:混合模型、固定效应模型和随机效应模型_哔哩哔哩_bilibili

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值