Stata面板数据进行空间效应模型分析

1.莫兰检验:

cd"D:\0.1data\02.first\02.stata"  定义一个路径存储W矩阵

通过数据编译器粘贴入数据,并保存为W-1.dta,(保存到上面定义的路径下)

spatwmat using W-1.dta,name(w) //用于全局莫兰指数

通过数据编译器粘贴入CEI数据,并保存为CEI-莫兰.dta文件,

或在数据编辑器中打开该保存好的文件

spatgsa (CI文件里面的变量名),weights(w) moran///全局Moran’s I   同时输出多个列如下

spatgsa y2012 y2013 y2014 y2015 y2016 y2017 y2018 y2019 y2020 y2021,weights(w) moran

2.空间计量模型

SDM:

空间计量模型

SDM:

先打开所在目录需要操作的数据文件(不考虑中介变量)

spatwmat using W-1.dta,name(W) standardize   //打开文件后导入矩阵,标准化以防出现initial values not feasible错误

xtset CODE2 YEAR   (CODE2 YEAR 都是打开dta文件里面的变量名)

xsmle ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_E,wmat(W)model(sdm)robust nolog noeffects

SAR

xsmle ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_E,wmat(W)model(sar)robust nolog noeffects

SEM

xsmle  ln_CO2 ln_ICT ln_URB ln_PGDP ln_IND ln_POP ln_EI,emat(W)model(sem)robust nolog noeffects

outreg2 using SEM.doc

3.空间计量模型的选择

对于SDM与SAR, 检验空间杜宾模型是否会退化为SAR

xsmle ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_E, fe model(sdm) wmat(w) nolog noeffects type(both)

est store sdm

xsmle ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_E,fe model(sar) wmat(w) nolog noeffects type(both)

est store sar

lrtest sdm sar  *H0:SDM退化为SAR
如果P小于0.1显著,不可以退化,P值大于0.1,说明可以退化

检验SDM是否退化为SEM

xsmle ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_EI,wmat(W) model(sdm) fe

 estat ic

xsmle ln_CO2 ln_I ln_U ln_P ln_IN ln_PO ln_EI,emat(W) model(sem) fe

 estat ic

通过对比SDM和SEM得出的AIC和BIC进行选择。

4.固定效应SDM时间、个体、双固定分析

xsmle ln_CO2 ln_ICT , model(sdm) wmat(W) type(time) nolog effects fe

outreg2 using SDM-time.doc //导出数据导word

est store sdm_time2

xsmle ln_CO2 ln_ICT , model(sdm) wmat(W) type(ind) nolog effects fe

outreg2 using SDM-ind.doc

est store sdm_ind2

xsmle ln_CO2 ln_ICT , model(sdm) wmat(W) type(both) nolog effects fe

outreg2 using SDM-both.doc

est store sdm_both2

进行对比分析

lrtest sdm_both2 sdm_time2,df(9)

lrtest sdm_both2 sdm_ind2,df(9)

### Stata 中的空间溢出效应分析 #### 使用 `xsmle` 命令进行空间计量经济学建模 为了在 Stata 中处理和分析空间溢出效应,可以利用命令 `xsmle` 来执行空间计量经济模型的估计。此命令允许指定不同的空间权重矩阵以及多种类型的模型结构来捕捉区域间的相互影响。 ```stata * 加载数据集并定义变量 * use "your_dataset.dta", clear * 定义空间权重矩阵 W * spmat use W using "path_to_your_spatial_weights_file.gal" * 运行带有稳健标准误差的空间滞后模型(SAR) * xsmle ln_CO2 ln_ICT ln_URB ln_PGDP ln_IND ln_POP ln_EI, emat(W) model(sar) robust nolog noeffects ``` 上述代码展示了如何加载数据文件、读取预先准备好的空间权重矩阵,并通过 `xsmle` 执行一个稳健的标准差调整后的空间滞后模型(SAR)。这里假设因变量为二氧化碳排放 (`ln_CO2`) 而其他变量作为解释因素参与其中[^3]。 #### 处理动态空间面板数据方法 当涉及到随时间和地点变化的数据时,则需考虑采用更复杂的动态空间面板模型来进行更为精确地描述现象之间的关系。针对这类情况,通常会应用到如下几种主要的技术: - 准似然函数或偏误修正的最大似然估计; - 广义矩估计(GMM); - 贝叶斯马尔科夫链蒙特卡罗模拟(Bayesian MCMC)[^2]。 这些技术能够更好地控制潜在的时间序列特性及其可能带来的内生性问题,在实际操作过程中可根据具体研究需求选取合适的方式实施计算。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值