全文阅读--XML全文阅读--中国知网 (cnki.net)
目的:从一篇论文中自行提炼出摘要和结论
(思考:这东西最好还是真能读懂,不然实在让人抓瞎,只能按着模板硬套)
摘要:
第一部分:说明该研究的重要意义。
第二部分:采用了什么方法进行研究
第三部分:得出实验结果,通过实验结果说明本文中方法的优点。
结论:
第一部分:总括。
第二部分:进行数据分析,表明本文方法的优势
第三部分:一些不足以及解决方法。
(具体内容视文章而定)
摘要:小麦产量关系到国家的粮食安全。产量预测为农业生产管理决策提供参考。
而单位面积麦穗数是最重要的指标,直接反映小麦的生长状况和品质好坏。
目前的研究均未以单位面积麦穗图像为研究对象,故无法获得泛化模型,
该研究提出了基于改进YOLOX的单位面积麦穗检测方法,采样框角点特征明显,因此
利用模型深度和特征图宽度较小的YOLOX-m模型训练采样框角点检测网络。
在特征提取层采用上下文信息进行特征重组的上采样方法和迭代注意力特征融合模块,有效减少了麦穗漏检情况,提高密集麦穗和遮挡麦穗的检测精度。
本研究结果表明,YOLOX-s模型精确率、召回率、平均准确度和F1分数都能达到100%,FPS为20帧/s,各项评价指标均高于SSD和Center Net模型,能够快速精确地对采样框的内角点进行检测。且该模型单位面积麦穗检测精度上明显高于SSD和Center Net模型。本文提出的基于改进YOLOX的单位面积麦穗检测方法可以准确地对包含单位面积采样框的图像进行麦穗计数,进而实现精准的小麦估产。结论:
(1)前人针对大面积农田场景下单位面积麦穗图像的研究较少,且在复杂条件下,密集麦穗和遮挡麦穗仍存在识别精度低等问题。为解决这一问题,本文提出一种基于改进YOLOX的单位面积麦穗检测方法。采样框角点特征明显,因此利用模型深度和特征图宽度较小的YOLOX-s训练采样框角点检测网络,获取单位面积区域。改进深度和特征图宽度进一步加深和加宽的YOLOX-m模型,在特征提取层采用上下文信息进行特征重组的上采样方法和迭代注意力特征融合模块,有效减少了麦穗漏检情况,提高密集麦穗和遮挡麦穗的检测精度。
(2)试验结果表明,基于YOLOX的模型在相同的数据集条件下,由于采样框角点颜色特征明显,YOLOX-s模型精确率、召回率、平均准确度和F1分数都能达到100%,FPS为20帧/s,各项评价指标均高于SSD和Center Net模型,能够快速精确地对采样框的内角点进行检测。同时,本文方法比其他麦穗检测计数方法准确率更高。
(3)线性拟合线可以有效反映预测值与真实值的关系,拟合程度较高,但是所有图像预测麦穗数量小于真实数量,这是由于严重遮挡情况下依然存在漏检情况导致的。针对以上问题,拟在实际测产中根据种植密度不同进行微调,以更符合实际测产的需要
小发现:在知网中也有一些有关qt的文章可以学习
(我暂时可以使用学校通道下载,有的需要付费)
基于Linux的点餐系统的设计与实现 - 中国知网 (cnki.net)
C++ GUI Programming with Qt 4 - 百度学术 (baidu.com)
基于QCustomPlot和Qt的曲线绘制及显示技术-期刊-钛学术文献服务平台 (taixueshu.com)
今天的世界,资源太多,所以更需要的其实是耐心。