C++进阶——AVL树

C++进阶——AVL树
AVL树的概念

在前面的文章中我们学习了二叉搜索树,但是二叉搜索树虽然可以缩短查找的效率,但是 如果数据有序或者接近有序的情况下二叉搜索树会退化成单支树,查找元素相当于在顺序表中搜索元素,效率低下。

因此,两位俄罗斯的数学家G.M.Adelson-Velskii和E.M.Landis在1962年发明了一种解决上述问题的方法:当向二叉搜索树中插入新结点后,如果能保证每个结点的左右子树高度之差的绝对值不超过1(需要对树中的结点进行调整), 即可降低树的高度,从而减少平均搜索长度。

一棵AVL树具有以下性质:

  • 它的左右子树都是AVL树
  • 左右子树高度之差(简称平衡因子)的绝对值不超过1(-1/0/1)

在这里插入图片描述

如果一棵二叉搜索树的高度是平衡的,那么它就是AVL树。如果该二叉搜索树中有n个节点,其搜索时间复杂度可以达到O(log2N)

AVL树的实现
AVL树节点的定义

我们这里的节点采用了三叉链的形式,节点中存放了该节点的平衡因子以及该元素的数据。

template<class K, class V>
struct AVLTreeNode
{
   
    //三叉链
	AVLTreeNode<K, V>* _left;
	AVLTreeNode<K, V>* _right;
	AVLTreeNode<K, V>* _parent;

	int _bf;//平衡因子

	pair<K, V> _kv;

	//构造函数
	AVLTreeNode(const pair<K, V>& kv)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _bf(0)
		, _kv(kv)
	{
   }
};
AVL树的四个默认成员函数
构造函数
//构造函数
	AVLTree()
		:_root(nullptr)
	{}
拷贝构造

这里的拷贝构造和二叉搜索树的拷贝构造的实现类似,实现一个Copy函数然后去调用Copy函数进行拷贝构造

    Node* _Copy(Node* root)
	{
   
		if (root == nullptr)
		{
   
			return nullptr;
		}
		Node* CopyNode = new Node(root->_kv);
		//将当前节点的平衡因子赋给CopyNode
		CopyNode->_bf = root->_bf;
		//更新CopyNode的父节点
		Node* Parent = nullptr;
		if (root->_parent)
		{
   
			Parent = new Node(root->_parent->_kv);
		}
		CopyNode->_parent = Parent;
		//递归调用
		CopyNode->_left = _Copy(root->_left);
		CopyNode->_right = _Copy(root->_right);

		return CopyNode;
	}


    //拷贝构造
	AVLTree(const AVLTree<K, V>& temp)
	{
   
		_root = _Copy(temp._root);
	}
析构函数

我们这里析构函数需要将从根节点到叶子节点的每个节点都释放掉,否则就会有内存泄漏的风险。因此我们这里通过实现一个Destory函数然后调用Destory函数来帮助我们去析构

    void _Destory(Node* root)
	{
   
		//如果遇到空结点就返回
		if (root == nullptr)
		{
   
			return;
		}
		//采用后续遍历的方式删除结点
		_Destory(root->_left);
		_Destory(root->_right);
		delete root;
	}


    //析构函数
	~AVLTree()
	{
   
		_Destory(_root);
		_root = nullptr;
	}
赋值运算符重载

我们这里的赋值运算符重载采用现代写法,还是老样子这里就是我们之前讲的送外卖的例子。

    //赋值运算符重载
	//s1 = s3
	//现代写法
	AVLTree<K, V>& operator=(AVLTree<K, V> temp)
	{
   
		swap(_root, temp._root);
		return *this;
	}
AVL树的插入
插入的步骤

AVL树就是在二叉搜素树的基础上引入了平衡因子,因此AVL树也可以看成是二叉搜索树。那么AVL的插入过程可以分为两步:

第一步: 我们需要按照二叉搜索树的方式插入新节点,前面的文章讲过二叉搜索树如何插入新节点,因此这一步对于大家来说问题不大。

第二步: 插入完新节点后,调节节点的平衡因子。这一步是AVL树的重点也是难点所在,我们要想真正知道AVL树是如何插入的,就必须学会如何调节平衡因子。

平衡因子的调节

一个节点的平衡因子是否更新,取决于,他的左右子树的高度是否变化,因此插入一个节点后,这个节点的祖先节点的平衡因子可能需要更新。因此下面我们来说一下祖先节点的平衡因子是如何更新的。

  1. 首先我们需要判断一下插入的节点是父亲节点的左孩子还是右孩子,如果是父亲节点的左孩子,父节点的平衡因子-1,如果是父节点的右孩子,父节点的平衡因子+1;

  2. 当我们更新完父亲节点的平衡因子后,此时父节点的平衡因子会有以下的几种情况:

    • 当前父节点的平衡因子为0,这说明插入节点之前,父节点的平衡因子为1或者-1,插入后被更新成0,此时表示我们这棵树已经是一棵平衡树了,不需要再向上更新平衡因子了。

在这里插入图片描述

  • 如果父节点的平衡因子等于1或者-1,说明插入节点之前,父节点的平衡因子为0,插入后被更新成1或者-1,对于上层的节点有影响,因此我们需要继续向上迭代更新祖先节点的平衡因子。

在这里插入图片描述

  • 如果父节点的平衡因子等于2或者-2,说明插入节点之前,父节点的平衡因子为1或者-1,插入后被更新成了2或-2;此时该父节点的平衡因子违反了平衡树的性质,因此我们需要对它进行旋转处理。

在这里插入图片描述

旋转处理(父节点的平衡因子违法平衡树的性质)

我们这里对于旋转处理又分为了以下的四种情况:

  1. 左单旋

    新节点插入到较高右子树的右侧,导致我们的右子树被拉高违反了平衡树的性质。

    我们先来看一下左单旋的抽象图:

在这里插入图片描述

看完了抽象图之后我们再来看两个左单选的具象图

具象图一:

在这里插入图片描述

具象图二:

在这里插入图片描述

看完抽象图和具象图之后我们就可以找到左单旋的规律:

将subR的左孩子(subRL)去做parent的右孩子,然后再让parent去做subR的左孩子,更新他们三者之间的链接关系,最后将parent与subR的平衡因子修改为0.

左单旋代码实现:

	//左单旋
	void RotateL(Node* parent)
	{
   
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		//将subRL链接到parent的右边
		parent->_right = subRL;
		if (subRL)
		{
   
			subRL->_parent = parent;
		}
		//提前记录parent节点的父节点
		Node* grandfather = parent->_parent;
		//将parent节点链接到subR的左边
		subR->_left = parent;
		parent->_parent = subR;

		//我们这颗树有可能是一个独立的树,也有可能不是因此需要判断一下
		if (parent == _root)
		{
   
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
   
			if (grandfather->_left == parent)
			{
   
				grandfather->_left = subR;
			}
			else
			{
   
				grandfather->_right = subR;
			}
			//更新subR的父节点
			subR->_parent = grandfather;
		}

		//旋转完毕
		//更新平衡因子
		subR->_bf = parent->_bf = 0;
	}
  1. 右单旋

    新节点插入到较高左子树的左侧,导致我们的左子树被拉高违反了平衡树的性质。

    我们先来看一下右单旋的抽象图:

在这里插入图片描述

看完了抽象图之后我们再来看两个右单选的具象图

具象图一:

在这里插入图片描述

具象图二:

在这里插入图片描述

通过观察抽象图和具象图我们也可以找到右单旋有如下规律:

将subL的右孩子(subLR)去做parent的左孩子,然后再让parent去做subL的右孩子,更新三者之间的链接关系,最后将parent与subL的平衡因子修改成0

右单旋实现代码:

//右单旋
	void RotateR(Node* parent)
	{
   
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		//将subLR链到parent的左边
		parent->_left = subLR;
		//如果subLR不为空,则将subLR的父节点指向parent
		if (subLR)
		{
   
			subLR->_parent = parent;
		}

		//提前记录当前parent的父节点
		Node* grandfather = parent->_parent;
		//让parent节点链接到subL的右边
		subL->_right = parent;
		parent->_parent = subL;

		//我们这棵树有可能是独立的一棵树,也有可能是一棵子树,因此我们需要判断一下
		if (parent == _root)
		{
   
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
   
			//我们先来判断一下parent是grandfather的左孩子还是右孩子
			//再来链接subL与grandfather
			if (grandfather->_left == parent)
			{
   
				grandfather->_left = subL;
			}
			else
			{
   
				grandfather->_right = subL;
			}
			subL->_parent = grandfather;
		}

		//旋转完毕
		//更新平衡因子
		subL->_bf = parent->_bf = 0;
	}
  1. 左右双旋

    新节点插入较高左子树的右侧—左右:先左单旋再右单旋

    我们先来看一下左右双旋的抽象图

在这里插入图片描述

看完了抽象图我想和大家说一下其实如果左右双旋如果细分的话它有三种情况,并且左右双旋它也是有它的规律的,我们再来观察一下对应三种情况的具象图并且找一下规律吧。

具象图一:

在这里插入图片描述

具象图二:

在这里插入图片描述

具象图三:

在这里插入图片描述

看完了抽象图以及这三张具象图,不知道大家找到了左右双旋的规律没呢?如果没找到就由我来告诉大家吧

我们通过这些图片可以发现一个规律:

双旋它是一个折线,而单选就是一条直线,左右双旋的本质是让subLR去做根节点,然后将subLR的右孩子给parent做parent的左孩子,将它的左孩子给subL做subL的右孩子。将subLR的右孩子给parent之后parent的平衡因子会变成0,但是subL的平衡因子就会变成-1,同样的将subLR的左孩子给subL之后subL的平衡因子会变成0,但是parent的平衡因子会变成1.

左右双旋代码实现:

	//左右双旋
	
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值