生鲜电商运营框架的对比和分析

生鲜行业大赛道,高频刚需,低毛利高损耗,近年来科技进步(电子支付,物流体系,数据支持及手机的普及)四因子推动供给, 消费升级(多,快,好,省)带动需求。赛道的核心就是如何通过提升效率减少成本来精细地运营20%的毛利空间,需要在成本及体 验上寻找一个平衡点,或是在满足消费者的高品质消费意愿基础上实现品质服务及产品溢价。

发展阶段:当前仍处于模式探索和行业洗牌期。生鲜电商萌芽于2012年,早期以地域性垂直类生鲜平台为主。15年生鲜电商吸引了电 商巨头和优质资本入局,行业快速发展。但投入大、盈利难的问题让大量中小创业公司出局,2017-2018年融资热度大幅度下降。当 前,生鲜电商仍处于模式探索的阶段,前置仓、社区团购等多种模式并存。 市场空间:2018年,生鲜电商市场交易规模2045亿,渗透率10.7%。从整个行业来看,生鲜电商规模正在迅速扩张,有机会从千亿市 场成长为万亿市场。

发展意义:缩短链条、降低损耗、提高毛利。传统供应链下,生鲜从产地到餐桌过程中损耗巨大,经销商加价严重。电商模式下,平 台可以深入产地源头,缩短交易链条。线上下单线下配送,缓解了传统商超占地面积大,租金成本高的问题。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

内容概要:本文详细介绍了OCR(光学字符识别)技术,从定义出发,阐述了它是如何让计算机“看懂”图片里的文字,通过扫描仪等设备读取文本图像并转换成计算机可编辑的文本。文中列举了OCR在办公、图书馆、交通、金融等领域的广泛应用实例,如快速处理纸质文件、车牌识别、银行支票处理等。接着回顾了OCR的发展历程,从20世纪初的萌芽到如今基于深度学习的智能化时代,期间经历了从简单字符识别到复杂场景下的高精度识别的演变。技术层面,深入解析了OCR的关键技术环节,包括图像预处理、文本检测、文本识别后处理,每个环节都采用了先进的算法技术手段以确保识别的准确性。最后探讨了OCR在未来可能面临的挑战,如复杂场景下的识别准确率、特殊字体语言的支持以及数据安全问题,并展望了其与人工智能融合后的广阔前景。 适合人群:对OCR技术感兴趣的技术爱好者、开发者以及希望了解该技术在各行业应用的专业人士。 使用场景及目标:①帮助用户理解OCR技术的基本原理发展历程;②展示OCR在多个行业中的具体应用场景,如办公自动化、金融票据处理、医疗病历管理等;③探讨OCR技术面临的挑战及未来发展方向,为相关从业者提供参考。 其他说明:本文不仅涵盖了OCR技术的基础知识,还深入探讨了其背后的技术细节发展趋势,对于想要深入了解OCR技术及其应用的人来说是非常有价值的参考资料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值