脑疾病数据集的预处理-功能连接矩阵(FC)

REST-meta-MDD数据集

数据下载地址为https://www.scidb.cn/en/detail?dataSetId=cbeb3c7124bf47a6af7b3236a3aaf3a8
该数据集为抑郁症数据集,不做具体介绍,详情请点击网站自行查看。
本文使用Results下的文件,如图
在这里插入图片描述
文件夹下为mat后缀的文件,可以使用matlab打开查看文件内容,每一个mat文件代表一名样本,例如图中文件在这里插入图片描述
S1代表机构编号,1代表样本为正常人,如果为2则代表为抑郁症患者,0001为患者编号
查看文件内容
在这里插入图片描述
可以看到文件为200*1833的矩阵,可以通过如下代码查看所有机构的样本数量和矩阵维度

import os
import scipy.io

data_folder="你自己的文件目录"
dict_num={}
dict_shape={}

for file_name in os.listdir(data_folder):
    if file_name.endswith('.mat'):
        label_1 = file_name.split('_')[1].split('-')[0]
        #label_2 = file_name.split('_')[1] .split('-')[1]

        mat_path = os.path.join(data_folder,file_name)
        mat_data = scipy.io.loadmat(mat_path)
        ROISignals = mat_data['ROISignals']
        if label_1 in dict_shape:
            dict_num[label_1]+=1
        else:
            dict_shape[label_1]=ROISignals.shape
            dict_num[label_1]=0
print(dict_num)
print(dict_shape)

在这里插入图片描述
关于我们使用的mat矩阵是什么,可以查看该博客
https://blog.csdn.net/sinat_35907936/article/details/115253078
简单来说就是各脑区BOLD(blood oxygenation level dependent,血氧依赖水平)信号的时间序列变化。
其中的“200”为200个时间序列变化,“1833”为1833个脑区
至于样本选取的脑区,可以查看链接
http://rfmri.org/RfMRIMapsDataSharingStructure
在这里插入图片描述
我认为本数据选取了不止一个图谱,至于选取了多少图谱,如上图所示,应该是有8个,当然这是我的猜测,如有错误敬请指正,在做实验时可以适当的减少图谱数,比如只选取AAL(1~116),如果效果较差可以增加图谱数看看是否有提升。
为了方便,可以编写一小段代码生成标签文件为后续进行深度学习做准备。

import os
import scipy.io

data_folder = "你自己的文件目录"
label_file_path = os.path.join(data_folder, "labels.txt")
count_1=0
count_2=0
with open(label_file_path, 'w') as label_file:
    for file_name in os.listdir(data_folder):
        if file_name.endswith('.mat'):
             label_1=file_name.split('_')[1].split('-')[0]
             label_2 = file_name.split('_')[1] .split('-')[1] # 获取文件名中的数字部分作为标签
             if label_2=='1':
                count_1+=1
             else:
                count_2+=1
             label_2=int(label_2)-1
             label_content = f'{file_name} {label_1} {label_2}\n'  # 标签文件内容,这里假设标签内容为"Label: 1"或"Label: 2"

             # 写入标签文件

             label_file.write(label_content)

看过上面提到的博客,你应该知道了我们需要将BOLD信号转为功能连接矩阵后再用于实验。nilearn是一个很方便的包,可以做上述的处理,可以查看以下博客进行学习
https://blog.csdn.net/jinxiaonian11/category_7299592.html
https://blog.csdn.net/u011661076/article/details/124324669
下述代码为图谱及功能连接矩阵的绘制

import numpy as np
import os
import matplotlib.pyplot as plt
from nilearn import plotting,datasets
from nilearn.connectome import ConnectivityMeasure
import nibabel as nib
import scipy.io

#获取aal图谱
aal = datasets.fetch_atlas_aal(version='SPM12', data_dir=None)
node_coords = plotting.find_parcellation_cut_coords(labels_img=aal.maps)
print(node_coords.shape)
print(aal)
#加载绘制aal图谱
aal_maps = nib.load(aal.maps)
plotting.plot_roi(aal_maps, title="AAL Atlas", display_mode='ortho', cut_coords=(0, 0, 0))
plotting.show()
labels=aal.labels
#data_folder=
data_folder="你自己的文件目录"#如'F:\\data\\rest-meta-mdd\\Results\\ROISignals_FunImgARglobalCWF'
for file_name in os.listdir(data_folder):
    if file_name.endswith('.mat'):
        path=os.path.join(data_folder,file_name)
        mat_data = scipy.io.loadmat(path)
        #print(mat_data['ROISignals'].shape)
        ROISignals = mat_data['ROISignals']
        ROISignals = ROISignals[:,:116]#只提取前116个特征
        #功能连接矩阵
        correlation_measure = ConnectivityMeasure(kind='correlation')
        correlation_matrix = correlation_measure.fit_transform([ROISignals])[0]
        print('correlation_matrix',correlation_matrix.shape)
        plt.figure(figsize=(15, 12))
        plt.imshow(correlation_matrix, interpolation="nearest", cmap="RdBu_r",
               vmax=0.8, vmin=-0.8)
        plt.colorbar()

        x_ticks = plt.xticks(range(len(labels) - 1), labels[1:], rotation=90)
        y_ticks = plt.yticks(range(len(labels) - 1), labels[1:])
        #plt.gca().yaxis.tick_right()
        plt.locator_params(nbins=90)
        plt.subplots_adjust(left=0.1, bottom=0.2, top=0.95, right=0.85)
        plt.show()

效果如下
在这里插入图片描述
在这里插入图片描述

关于脑区图谱的获取,可以参考官方页面,上述代码只提取了前116个脑区生成了功能连接矩阵
https://nilearn.github.io/stable/modules/datasets.html

ABIDE数据集

数据集的准备参照
http://preprocessed-connectomes-project.org/abide/download.html
在这里插入图片描述
在这里插入图片描述
1D后缀的数据可以直接使用numpy.loadtxt函数导入,其余步骤与上述REST-meta-MDD数据处理方式相同,该数据也是血氧依赖信号随时间序列的变化矩阵。该数据集使用的是AAL116图谱模板。
可以通过以下代码绘制某一脑区血氧依赖随时间序列的变化图

data_folder="你的文件目录“
for file_name in os.listdir(data_folder):
    path=os.path.join(data_folder,file_name)
    data = np.loadtxt(path)
    #1D数据
    print(data.shape)
    #print(len(data))
    plt.plot(range(len(data)),data[:,0])
    plt.xlabel('Time Series')
    plt.ylabel('ROI BOLD')
    plt.show()

效果如下
在这里插入图片描述

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值