REST-meta-MDD数据集
数据下载地址为https://www.scidb.cn/en/detail?dataSetId=cbeb3c7124bf47a6af7b3236a3aaf3a8
该数据集为抑郁症数据集,不做具体介绍,详情请点击网站自行查看。
本文使用Results下的文件,如图
文件夹下为mat后缀的文件,可以使用matlab打开查看文件内容,每一个mat文件代表一名样本,例如图中文件
S1代表机构编号,1代表样本为正常人,如果为2则代表为抑郁症患者,0001为患者编号
查看文件内容
可以看到文件为200*1833的矩阵,可以通过如下代码查看所有机构的样本数量和矩阵维度
import os
import scipy.io
data_folder="你自己的文件目录"
dict_num={}
dict_shape={}
for file_name in os.listdir(data_folder):
if file_name.endswith('.mat'):
label_1 = file_name.split('_')[1].split('-')[0]
#label_2 = file_name.split('_')[1] .split('-')[1]
mat_path = os.path.join(data_folder,file_name)
mat_data = scipy.io.loadmat(mat_path)
ROISignals = mat_data['ROISignals']
if label_1 in dict_shape:
dict_num[label_1]+=1
else:
dict_shape[label_1]=ROISignals.shape
dict_num[label_1]=0
print(dict_num)
print(dict_shape)
关于我们使用的mat矩阵是什么,可以查看该博客
https://blog.csdn.net/sinat_35907936/article/details/115253078
简单来说就是各脑区BOLD(blood oxygenation level dependent,血氧依赖水平)信号的时间序列变化。
其中的“200”为200个时间序列变化,“1833”为1833个脑区
至于样本选取的脑区,可以查看链接
http://rfmri.org/RfMRIMapsDataSharingStructure
我认为本数据选取了不止一个图谱,至于选取了多少图谱,如上图所示,应该是有8个,当然这是我的猜测,如有错误敬请指正,在做实验时可以适当的减少图谱数,比如只选取AAL(1~116),如果效果较差可以增加图谱数看看是否有提升。
为了方便,可以编写一小段代码生成标签文件为后续进行深度学习做准备。
import os
import scipy.io
data_folder = "你自己的文件目录"
label_file_path = os.path.join(data_folder, "labels.txt")
count_1=0
count_2=0
with open(label_file_path, 'w') as label_file:
for file_name in os.listdir(data_folder):
if file_name.endswith('.mat'):
label_1=file_name.split('_')[1].split('-')[0]
label_2 = file_name.split('_')[1] .split('-')[1] # 获取文件名中的数字部分作为标签
if label_2=='1':
count_1+=1
else:
count_2+=1
label_2=int(label_2)-1
label_content = f'{file_name} {label_1} {label_2}\n' # 标签文件内容,这里假设标签内容为"Label: 1"或"Label: 2"
# 写入标签文件
label_file.write(label_content)
看过上面提到的博客,你应该知道了我们需要将BOLD信号转为功能连接矩阵后再用于实验。nilearn是一个很方便的包,可以做上述的处理,可以查看以下博客进行学习
https://blog.csdn.net/jinxiaonian11/category_7299592.html
https://blog.csdn.net/u011661076/article/details/124324669
下述代码为图谱及功能连接矩阵的绘制
import numpy as np
import os
import matplotlib.pyplot as plt
from nilearn import plotting,datasets
from nilearn.connectome import ConnectivityMeasure
import nibabel as nib
import scipy.io
#获取aal图谱
aal = datasets.fetch_atlas_aal(version='SPM12', data_dir=None)
node_coords = plotting.find_parcellation_cut_coords(labels_img=aal.maps)
print(node_coords.shape)
print(aal)
#加载绘制aal图谱
aal_maps = nib.load(aal.maps)
plotting.plot_roi(aal_maps, title="AAL Atlas", display_mode='ortho', cut_coords=(0, 0, 0))
plotting.show()
labels=aal.labels
#data_folder=
data_folder="你自己的文件目录"#如'F:\\data\\rest-meta-mdd\\Results\\ROISignals_FunImgARglobalCWF'
for file_name in os.listdir(data_folder):
if file_name.endswith('.mat'):
path=os.path.join(data_folder,file_name)
mat_data = scipy.io.loadmat(path)
#print(mat_data['ROISignals'].shape)
ROISignals = mat_data['ROISignals']
ROISignals = ROISignals[:,:116]#只提取前116个特征
#功能连接矩阵
correlation_measure = ConnectivityMeasure(kind='correlation')
correlation_matrix = correlation_measure.fit_transform([ROISignals])[0]
print('correlation_matrix',correlation_matrix.shape)
plt.figure(figsize=(15, 12))
plt.imshow(correlation_matrix, interpolation="nearest", cmap="RdBu_r",
vmax=0.8, vmin=-0.8)
plt.colorbar()
x_ticks = plt.xticks(range(len(labels) - 1), labels[1:], rotation=90)
y_ticks = plt.yticks(range(len(labels) - 1), labels[1:])
#plt.gca().yaxis.tick_right()
plt.locator_params(nbins=90)
plt.subplots_adjust(left=0.1, bottom=0.2, top=0.95, right=0.85)
plt.show()
效果如下
关于脑区图谱的获取,可以参考官方页面,上述代码只提取了前116个脑区生成了功能连接矩阵
https://nilearn.github.io/stable/modules/datasets.html
ABIDE数据集
数据集的准备参照
http://preprocessed-connectomes-project.org/abide/download.html
1D后缀的数据可以直接使用numpy.loadtxt函数导入,其余步骤与上述REST-meta-MDD数据处理方式相同,该数据也是血氧依赖信号随时间序列的变化矩阵。该数据集使用的是AAL116图谱模板。
可以通过以下代码绘制某一脑区血氧依赖随时间序列的变化图
data_folder="你的文件目录“
for file_name in os.listdir(data_folder):
path=os.path.join(data_folder,file_name)
data = np.loadtxt(path)
#1D数据
print(data.shape)
#print(len(data))
plt.plot(range(len(data)),data[:,0])
plt.xlabel('Time Series')
plt.ylabel('ROI BOLD')
plt.show()
效果如下